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Abstract

We consider the problem of estimating the mean of a set of vectors, which are
stored in a distributed system. This is a fundamental task with applications in
distributed SGD and many other distributed problems, where communication is a
main bottleneck for scaling up computations. We propose a new sparsity-aware
algorithm, which improves previous results both theoretically and empirically.
The communication cost of our algorithm is characterized by Hoyer’s measure of
sparseness. Moreover, we prove that the communication cost of our algorithm is
information-theoretic optimal up to a constant factor in all sparseness regime. We
have also conducted experimental studies, which demonstrate the advantages of
our method and confirm our theoretical findings.

1 Introduction

Consider a distributed system with n nodes, called clients, each of which holds a d-dimensional
vector Xi ∈ Rd. The goal of distributed mean estimation (DME) is to estimate the mean of these
vectors, i.e., X := 1

n

∑n
i=1Xi, subject to a constraint on the communication cost (i.e. the total

number of bits transmitted by all clients).

DME is a fundamental task in distributed machine learning and optimization problems [3, 10, 18,
14, 12]. For example, gradient aggregation in distributed stochastic gradient decent (SGD) is a form
of DME. In the standard synchronous implementation, in each round, clients evaluate their local
gradients with respect to local mini-batches and communicate them to a central server; the server then
computes the mean of all these gradients, which is used to update the model parameters. It is widely
observed that the communication cost of gradient exchange has become a significant bottleneck for
scaling up distributed training [5, 19, 24]. Therefore, communication-efficient gradient aggregation
has received lots of attention recently [1, 2, 15, 23, 26]. DME is also a critical subproblem in many
other applications such as the distributed implementation of Lloyd’s algorithm for K-means clustering
[16] and power iteration for computing eigenvectors [21].

However, the communication complexity of this fundamental problem has not been fully understood,
especially when the input is sparse or skew. In this paper, we provide a tight connection between
communication complexity and input sparsity. Specifically, we propose a new sparsity-aware lossy
compression scheme, which reduces the communication cost both theoretically and empirically.
We also prove that the communication cost of our method is information-theoretic optimal up to a
constant factor in all sparsity regime, under Hoyer’s measure of sparseness [9].
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1.1 Problem definition and notation

The problem setting in this paper is the same as in [20]. Each client i holds a private vector Xi ∈ Rd
and transmits messages only to the central sever according to some protocol; at the end, the sever
outputs an estimate for the mean X = 1

n

∑n
i=1Xi based on all the messages it has received. The

communication cost of a protocol is measured by the total number of bits exchanged between clients
and the sever. Let X̂ denote the estimated mean and we wish to minimize the mean square error
(MSE) of the estimate, i.e., E = E ‖X̂ −X‖22, under a certain communication budget. Note that the
problem considered here is non-stochastic, i.e., the input vectors are arbitrary or even adversarial.
This is different from distributed statistical estimation [27, 8, 4], where the inputs are i.i.d samples
from some distribution and the goal is to estimate the parameters of the underlying distribution. In
particular, the expectation in the above definition of MSE is only over the randomness of the protocol.

We define F1 :=
∑n
i=1 ‖Xi‖1, i.e., the sum of `1-norms of input vectors; let F2 :=

∑n
i=1 ‖Xi‖22 be

the sum of squared `2-norms of the input vectors and F0 be the total number of non-zero entries in
all the input vectors. We will always use d to denote the dimensionality of input vectors and n for the
number of clients.

1.2 Previous results

Naively sending all vectors to the sever needs ndr bits of communication, where r is the number
of bits to represent a floating point number. In [20], several methods to save communication are
proposed. The best of them uses O(nd) bits of communication while achieving an MSE of F2/n

2.
Their algorithm first applies stochastic quantization and then encodes the quantized vectors by entropy
encoding schemes such as arithmetic coding. Moreover, it is also proved that, in the worst case, this
cost is optimal for one-round protocols. Similar bounds are also obtained in [2, 11]. One major
limitation of the methods in [20] is that they cannot exploit the sparseness in the inputs due to the
nature of their quantization and encoding methods. In many distributed learning scenarios, the input
vectors can be very sparse or skew, i.e., a large fraction of the entries can be zero or close to zero.
The sparsity can be caused by either data unbalance (large entries occur in a few clients) or feature
unbalance (large entries occur in a few dimensions). QSGD of [2] works well in practice for sparse
data, but doesn’t have an upper bound on the cost that is parameterized by input sparsity: to achieve
an MSE of F2/n

2, the cost is still O(nd) bits (Theorem 3.2, Corollary 3.3 in [2]).

Intuitively, one could drop entries with small absolute values without affecting the MSE too much.
Gradient sparsification utilizes this idea, which has been successfully applied in distributed gradient
compression [19, 1, 15, 22, 23]. However, such methods either do not have optimal sparsity-sensitive
theoretical guarantees or work only under strong sparsity assumptions.

There are various sparsity notions, but it is currently not clear which notion best characterizes the
inherent complexity of DME. To get meaningful sparsity-sensitive bounds, it is essential to identify
an appropriate sparsity notion for DME. In this paper, we propose to use a modified notion of Hoyer’s
to measure the sparseness of vectors [9]. For a d-dimensional vector X , its sparseness is defined as
‖X‖21
d‖X‖22

.1 Since our inputs can be viewed as an nd-dimensional vector, the global sparseness is defined

as s := F 2
1 /ndF2. Note that 1

nd ≤ s ≤ 1; s = 1 (densest) iff all entries are non-zero and have equal
absolute values, and s = 1

nd (sparsest) iff the input contains a single non-zero entry. Wangni et al.
[23] obtain a sparsity-aware bound based on a different sparsity notion, but our result implies theirs
and can be much better for some inputs (see the supplementary for details).

1.3 Our contributions
First, we propose a sparsity-sensitive compression method that provably exploits the sparseness
of the input. Specifically, to achieve an MSE of E ≤ F2

n2 , our protocol only needs to transmit
C ≈ nds log

(
1
s + 1

)
bits (ignoring some lower order terms), where s is the sparseness of the input

defined earlier. Since s log
(

1
s + 1

)
≤ 1 when s ≤ 1, this is always no worse than nd (the cost of

[20]) and can be much smaller on sparse inputs, i.e., when s� 1.

Secondly, we prove that, for any sparseness s ≤ 1, the communication cost of our protocol is
optimal, up to a constant factor. Specifically, for any s ≤ 1, we construct a family of inputs with

1The original Hoyer’s measure is the ratio between the `1 and `2 norm, normalized to the range [0, 1].
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sparseness equal to s, and prove that any protocol achieving an MSE of F2

n2 on this family must incur
Ω(nds log 1

s ) bits of communication in expectation for some inputs in this family. This lower bound
holds for multi-round protocols in the broadcasting model (where each message can be seen by all
clients). As observed in [20], any lower bound for distributed statistical mean estimation can be
translated to a lower bound for the DME problem. However, current lower bounds in this area do not
suffice to obtain tight sparsity-sensitive bounds for DME.

Finally, we complement our theoretical findings with experimental studies. Empirical results show
that, under the same communication bandwidth, our proposed method has a much lower MSE,
especially on sparse inputs, which verifies our theoretical analyses. Moreover, as a subroutine, our
protocol outperforms previous approaches consistently in various distributed learning tasks, e.g.,
Lloyd’s algorithm for K-means clustering and power iteration.

2 Sparsity-Sensitive DME Protocol
Overview of our techniques. Algorithms in [20] apply k-level stochastic quantization and then
encode the quantized vectors using variable length coding. Specifically, for eachXi, the client divides
the range [Xmin

i , Xmax
i ] into k−1 intervals of equal length, and then identifies the interval containing

each Xij and rounds it either to the left point or the right point of the corresponding interval with
probability depending on its distance to the end points. After quantization, the vector can be viewed
as a string of length d over an alphabet of size k, which is then compressed using arithmetic coding.
QSGD is similar, but encodes signs separately and uses the Elias coding method.

Since the sparseness depends on the `1 norm F1, our quantization step size depends on F1 as
in Wang et al. [22]. In addition to F1 quantization, our protocol has the following algorithmic
ingredients. 1) All clients in our protocol use the same interval size in stochastic quantization. This
means that the number of levels may vary for different clients, as opposed to all previous methods,
where all clients use a fixed number of levels. This is another major difference in our quantization
step, which is necessary to get communication bounds in terms of global sparseness. 2) As in
QSGD, we encode the sign of each entry separately and only quantize the absolute values, which
can be conveniently implemented by a scaling and rounding procedure. 3) Instead of encoding the
quantized vectors directly with entropy coding methods, we first convert each integer vector into
a bit string using a one-to-one map: for any integer vector v = (v1, v2, · · · , vd), the length of its
corresponding bit string is d+ ‖v‖1− 1, among which the number of 1’s is exactly d− 1. 4) We then
apply efficient coding methods, e.g., arithmetic coding, to encode the entire bit string using roughly
log
(
d+‖v‖1

d

)
≈ ‖v‖1 log d+‖v‖1

‖v‖1 bits.

Scaling and Rounding. We first introduce the scaling and rounding procedure (Algorithm 1),
which is essentially equivalent to stochastic quantization (for the absolute values only). The next
Lemma summarizes the key properties of SaR, the proof of which is in the supplementary.

Algorithm 1 Scaling and Rounding (SaR)
input v ∈ Rd and a scaling factor F

1: u = 1
F · v

2: Randomized rounding: for j = 1, · · · , d

ûj =

{
bujc+ 1, with probability uj − bujc
bujc , otherwise.

3: return û

Lemma 2.1. Let v̂ = F û, then E[v̂] = v and E[‖v̂ − v‖22] ≤ F‖v‖1. Moreover, E[|v̂i|] = |vi|.

In our protocol, we apply Algorithm 1 on each Xi with F = F1/C, where C is a tunable parameter.
Let ûi be the output for Xi and X̂i = F ûi. At the end, the server uses X̂ =

∑n
i=1 X̂i/n as the

estimate for the mean, then by Lemma 2.1, the MSE is

E = E ‖X̂ −X‖22 =
1

n2

n∑
i=1

E[‖X̂i −Xi‖22] ≤ F

n2

n∑
i=1

‖Xi‖1 =
F 2

1

Cn2
. (1)
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Constant-weight binary sequence. The Hamming weight of a length-d binary sequence v is
denoted by w(v) = |{vi : vi = 1}|. Constant-weight binary codes C(d,w) is the set of all length-d
sequences with weight w. Since |C| =

(
d
w

)
, the number of bits to represent a sequence in C is at least

dlog
(
d
w

)
e. There exists efficient encoding methods, such as arithmetic coding or its variants [17], to

encode sequences in C using binary strings of length very close to dlog
(
d
w

)
e, which has encoding

and decoding time O(d).

Constant-weight non-negative integer vector coding. Denote the weight of a length-d non-
negative integer vector v by w(v) =

∑d
i=1 vi. Constant-weight integer codes I(d,w) is the set of

length-d non-negative integer vectors with weight w. In our protocol, we map each v ∈ I(d,w) to a
binary sequence f(v) ∈ C(d + w − 1, d − 1) as follows. For i = 1, 2, · · · , d − 1 we write vi ‘0’s
and one ‘1’, and in the end we write vd ‘0’s. It is an (d+ w − 1, d− 1) constant-weight binary code.
One can also verify that f is a one-to-one and onto map from I(d,w) to C(d+ w − 1, d− 1). By
applying encoding methods for C mentioned above, we have the following lemma.

Lemma 2.2. Sequences in I(d,w) can be encoded losslessly by dlog
(
d+w−1
d−1

)
e-bit binary strings,

with encoding and decoding time O(d+ w).

2.1 The Protocol

We are now ready to describe our sparsity-sensitive DME protocol.

1. (Initialization) Clients and the server determine the scaling factor F to be used in Algorithm 1 and
we will use F = F1/C for some C ≤ nd. To compute F1, each client i sends ‖Xi‖1 to the server
using r bits, where r is the number of bits to represent floating points. Then the server computes
F1 =

∑
i ‖Xi‖1 and broadcasts it to all the clients. This step use 2r bits of communication per client.

2. (Quantization) Client i runs SaR(Xi, F1/C) (Algorithm 1) and get an integer vector ûi. The
absolute value and sign of each entry in ûi will be encoded separately. Let vi = (|ûi1|, · · · , |ûid|).

3. (Encoding) Note that vi ∈ I(d,wi), where wi = w(vi). Client i encodes vi using a
dlog

(
d+wi−1
d−1

)
e-bit string (Lemma 2.2) and sends it to the sever. The client also sends the value

∆wi = wi − bC‖Xi‖1/F1c with log(2d+ 1) bits 2, as wi is needed for decoding vi. 3

4. (Sending the signs) Let si be a binary sequence indicating the signs of non-zero entries in ûi.
Client i simply sends this sequence with di bits of communication, where di is the number of non-zero
values in vi. Moreover, we can apply constant-weight coding to compress this sequence.

5. (Decoding) The server decodes vi, which contains the absolute values of ûi. Given the signs of
its the non-zero entries si, the server is now able to recover ûi losslessly. It finally computes the
estimated mean X̂ = 1

n

∑
i X̂i = F1

Cn

∑
i ûi.

The correctness of the protocol readily follows from Lemma 2.1 and (1): E[X̂] = X and E[‖X̂ −
X‖22] ≤ F 2

1

Cn2 . Below we analyze its communication cost. By part 2 of Lemma 2.1, we have
E[wi] =

∑
j E[|ûij |] =

∑
j
C|Xij |
F1

= C‖Xi‖1
F1

. Therefore, E[
∑n
i=1 wi] =

∑n
i=1

C‖Xi‖1
F1

= C.

Because of the observation di ≤ wi, we have the expected total communication cost is at most

E

[
n∑
i=1

(
2r + log(2d+ 1) + log

(
d+ wi − 1

d− 1

)
+ di

)]

6 E

[
n∑
i=1

wi log

(
d

wi
+ 1

)]
+O(C + nr + n log d).

2Clearly, ∆wi is an integer and |∆wi| 6 d. One can also use universal code such as Elias gamma code [7]
to reduce the bits of transmitting ∆wi.

3One can also use entropy coding to encode vi, but it is unclear whether such methods achieve the same
theoretical guarantee as ours.
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From the concavity of the function x log( 1
x + 1) on R>0 and Jensen’s inequality, we have

E

[
n∑
i=1

wi log

(
d

wi
+ 1

)]
6 E

[
(

n∑
i=1

wi) log

(
nd∑n
i=1 wi

+ 1

)]
6 C log

(
nd

C
+ 1

)
.

Therefore, we get the following theorem, and by setting C = F 2
1 /F2, the next corollary follows.

Theorem 2.3. For any C ≤ nd, there exists a DME protocol that achieves an MSE of F 2
1

Cn2 with
C log

(
nd
C + 1

)
+ O(C + nr + n log d) bits of communication, where r is the number of bits to

represent a floating point.
Corollary 2.4. There exists a DME protocol that achieves an MSE of F2

n2 using nds · log
(

1
s + 1

)
+

O(nds+ nr + n log d) bits, where s = F 2
1 /ndF2 is the Hoyer’s measure of sparseness of the inputs.

Remark. The authors of [20] discuss how to use client or coordinate sampling to obtain a trade-off
between MSE and communication. Their analysis shows that, to achieve an MSE of F2/pn

2, the
communication cost is O(pnd) bits (ignoring low order terms), where 0 ≤ p ≤ 1 is the sampling
probability. Applying our sparsity-sensitive protocol on the sampled clients or coordinates, we can
achieve the same MSE with a communication of O(pnds log( 1

s + 1)) bits, which will never be worse
and can be much better on inputs with small spareness s.

We also would like to point out that, our algorithm can also be run without the synchronization round.
For this setting, we can derive a communication bound for each client by simply setting n = 1 in
Corollary 2.4, although s in the bound will become the local sparsity of the client when doing so.
Local sparsity bound is worse than global sparsity when there is data unbalance, but the bound is still
better than prior work as long as there is dimension unbalance across different clients. This is also
verified in our experimental results below.

Since the sparseness depends on the `1 norm F1, the key to getting a sparsity-sensitive bound is to
understand the connection between F1 and the MSE-communication trade-off. So our quantization
step size depends on F1, which is one of the main differences in the quantization step compared with
[20, 2, 23]. Wang et al. [22] also use F1 quantization, but only consider 1-level quantization and
doesn’t specify an appropriate encoding method to achieve an optimal sparsity-sensitive bound. Our
protocol uses C log

(
nd
C + 1

)
bits of communication to achieve an MSE of F 2

1 /n
2C, where C ≤ nd

is a tunable parameter; and if we set C = F 2
1 /F2, the MSE and communication cost are F2/n

2 and
nds log(1/s+ 1) respectively, as claimed earlier. Having C as a tunable parameter gives us a better
control on the cost of the protocol; our result in fact implies the MSE-communication trade-off of
[22] (and could be much better) but not vice versa. Wang et al. [22] prove that their algorithm can
compress a vector X ∈ Rd using kr bits (where r is the number of bits to represents floating points
and k is a tuning parameter) with MSE F 2

1 /k; ours algorithm (the special case when n = 1) can
compress X using C log( dC + 1) bits with MSE at least F 2

1 /C. By setting C = k, we achieve the
same MSE while the cost is k log(d/k) bits (and it is trivial to make it be kmin(log(d/k), r)). When
k = Θ(d), the cost is O(k) bits versus O(kr).

3 Lower Bound

In this section, we show the optimality of Theorem 2.3 by proving the following lower bound.
Theorem 3.1. For any n ≤ C ≤ nd

2 , there exists a family of inputs, all of which have F1 = F2 = C,
such that any randomized protocol solving the DME problem on this family in the broadcast model
with an MSE of F 2

1

4n2C must communicate at least C2 log nd
2C bits.

This theorem immediately leads to the following corollary, which means that our sparsity-sensitive
protocol is optimal (up to a constant factor) for all sparseness 1

d ≤ s ≤
1
2 .

Corollary 3.2. For any sparseness 1
d ≤ s ≤ 1

2 , there exists a family of inputs, all of which have
sparseness s, such that any randomized protocol solving the DME problem on this family in the
broadcast model with an MSE of F2

4n2 must communicate at least of nds2 log( 1
2s ) bits.

Proof. Note that on the family of inputs used in the proof of Theorem 3.1 (presented shortly), we
have s =

F 2
1

ndF2
= C

nd and E =
F 2

1

4n2C = F2

n2 . Since this family exists for any n ≤ C ≤ nd
2 , we obtain a

5



family with sparseness s for any 1
d ≤ s ≤

1
2 . Then, the MSE and communication cost in Theorem 3.1

can be rewritten as claimed in the corollary.

The rest of this section is devoted to the proof of Theorem 3.1. To prove lower bounds for
randomized protocols, the standard tool is Yao’s Minimax Principle [25]. We will define an
input distribution D for DME. Suppose there is a randomized algorithm AR with worst case
(for any possible input) MSE M and expected cost T , where R is the randomness used in
the algorithm. Now, if we sample input X ∼ D, then EREX∼D[MSE of AR(X)] ≤ M and
EREX∼D[Cost of AR(X)] ≤ T . By Markov’s inequality, PrR [EX∼D[ MSE of AR(X)] ≤ 4M ] ≥
0.75 and PrR [EX∼D[Cost of AR(X)] ≤ 2T ] ≥ 0.5. Then, with positive probability, the two
events happen simultaneously. In other words, there exists some fixed randomness r such that
EX∼D[ MSE of Ar(X)] ≤ 4M and EX∼D[Cost of Ar(X)] ≤ 2T where Ar is now simply a deter-
ministic algorithm. That means if there is a randomized algorithm with worst case MSE M and
expected cost T , then there exist a deterministic algorithm with MSE 4M and expected cost 2T w.r.t.
any input distribution D.

Minimax Principle. From the above argument, it is sufficient to prove that, for some input dis-
tribution D, any deterministic protocol with MSE at most Θ(F 2

1 /n
2C) must incur an expected

communication cost of Ω(C log nd
C ) bits.

Input distribution. For any fixed n ≤ C ≤ nd/2, we define the hard distribution D for our
problem as follows. Each Xi is divided into t = C/n blocks, each of size b = nd/C. In this
section, we use xij ∈ Rb to denote the jth block in Xi. In D, each block xij is uniformly sampled
from b-dimensional standard basis vectors, i.e. Pr[xij = ek] = 1/b for each 1 ≤ k ≤ b, and the
distribution of xij are independent across all i and j. Note that any input sampled from D has `1
norm exactly C.

Let Π be any deterministic protocol with MSE bounded by F 2
1 /4n

2C = C/4n2 w.r.t. the input
distribution D. We next prove a lower bound of the expected communication cost of Π w.r.t. D. Let
X1, X2, · · · , Xn be a random input sampled from D and Π(X1, · · · , Xn) be the transcript of the
protocol given the input, i.e., the concatenation of all messages, which is a random variable. When
there is no confusion, we will omit the input and use Π to denote the random transcript; and π ∼ Π
means π is chosen according to the distribution of Π(X1, · · · , Xn) .

Since the protocol is deterministic, any particular transcript π corresponds to a deterministic set of
inputs Rπ , i.e., all inputs in Rπ generate the same transcript π under the protocol Π. Hence, all inputs
in Rπ share the same output, denoted as Y π. Note each input belongs to a unique Rπ, and thus all
Rπ corresponds to a partition of all possible inputs. It is well-known Rπ is a combinatorial rectangle,
i.e., Rπ = B1 × · · · ×Bn, where each Bi ⊆ {0, 1}d is some subset of all possible inputs of the ith
client.
Definition 1. Define Dπ as the conditional distribution of X1, X2, · · · , Xn (sampled from D) condi-
tioned on the event [X1, X2, · · · , Xn] ∈ Rπ .

Let X = 1
n

∑n
i=1Xi. By the property of conditional expectation, we have the following Lemma.

Lemma 3.3. We assume Π has an MSE of C
4n2 , then Eπ∼ΠE[X1,··· ,Xn]∼Dπ

[
‖X − Y π‖2

]
≤ C

4n2 .

Definition 2. Suppose [X1, · · · , Xn] ∼ Dπ, then for every i and j, the distribution of xij is still a
distribution over b-dimensional basis vectors. For each i, j, we define pπijk = PrDπ [xij = ek] for

k ∈ [b], where
∑b
k=1 p

π
ijk = 1.

The next lemma is crucial to our argument, the proof of which can be found in the supplementary.
Lemma 3.4. For any π and let Y π be its output, we have

t∑
j=1

b∑
k=1

n∑
i=1

[pπijk(1− pπijk)] ≤ n2 · E[X1,··· ,Xn]∼Dπ
[
‖X − Y π‖2

]
.

Here we introduce some basic notations from information theory [6]. For any random variable
X , H(X) is the standard Shannon Entropy of X . For any random variables X,Y, Z, we use

6



H(X|Y ) = EY [H(X|Y = y)] to denote the conditional entropy of X given Y , and I(X;Y |Z) =
H(X|Z)−H(X|Y, Z) to denote the conditional mutual information between X and Y given Z. We
know the average encoding length of a random transcript Π, i.e., the expected communication cost, is
lower bounded by its entropy H(Π). By the non-negativity of (conditional) entropy, we have

H(Π) = I(X1, · · · , Xn; Π) +H(Π|X1, · · · , Xn) ≥ I(X1, · · · , Xn; Π). (2)

Next we prove a lower bound on I(X1, · · · , Xn; Π). We will need the following property.
Lemma 3.5. Let X,Y, Z be three random variables such that X and Y are independent, then
I(X,Y ;Z) ≥ I(X;Z) + I(Y ;Z).

Lemma 3.6. I(X1, · · · , Xn; Π) ≥ C
2 log nd

2C .

Proof. Since the input distribution is independent across different blocks and clients, by Lemma 3.5,
we have I(X1, · · · , Xn; Π) ≥

∑t
j=1

∑n
i=1 I(Xij ; Π). Thus,

I(X1, · · · , Xn; Π) ≥
t∑

j=1

n∑
i=1

H(Xij)−
t∑

j=1

n∑
i=1

H(Xij | Π)

= C log
nd

C
− Eπ∼Π

 t∑
j=1

n∑
i=1

H(Xij | Π = π)

 , (3)

where we use H(Xij) = log b = log nd
C . Let qπij = min(pπij , 1 − pπij) (see Definition 2), then

qπij ≤ 0.5. It can be verified by elementary calculus that qπij log 1
qπij
≥ (1 − qπij) log 1

1−qπij
, which

implies that qπij log 1
qπij
≥ pπij log 1

pπij
. So,

Eπ∼Π

 t∑
j=1

n∑
i=1

H(Xij | Π = π)

 =Eπ∼Π

 t∑
j=1

n∑
i=1

b∑
k=1

(
pπijk log

1

pπijk

)
≤Eπ∼Π

 t∑
j=1

n∑
i=1

b∑
k=1

(
qπijk log

1

qπijk

)
≤Eπ∼Π

(

t∑
j=1

n∑
i=1

b∑
k=1

qπijk) log
nd∑t

j=1

∑n
i=1

∑b
k=1 q

π
ijk


≤Eπ∼Π[

t∑
j=1

n∑
i=1

b∑
k=1

qπijk] log
nd

Eπ∼Π[
∑t
j=1

∑n
i=1

∑b
k=1 q

π
ijk]

where the last two inequalities is from Jensen’s inequality (since x log(1/x) is concave on R>0).

Since each qπijk ≤ 0.5 and by Lemma 3.3 and 3.4, we have

Eπ∼Π

 t∑
j=1

n∑
i=1

b∑
k=1

qπijk

 ≤ 2Eπ∼Π

 t∑
j=1

n∑
i=1

b∑
k=1

[qπijk(1− qπijk)]


= 2Eπ∼Π

 t∑
j=1

n∑
i=1

b∑
k=1

[pπijk(1− pπijk)]

 ≤ C

2
.

Consider the function g(x) = x log nd
x , which is concave on R>0 and its derivative is g′(x) =

log nd
x −

1
ln 2 . Thus g(x) attains its maximum at x = nd

21/ ln 2 . Moreover, g(x) is monoton-
ically increasing for 0 < x ≤ nd

21/ ln 2 . Since we assume C
2 ≤ nd

4 < nd
21/ ln 2 , we have

Eπ∼Π

[∑t
j=1

∑n
i=1H(Xij | Π = π)

]
≤ C

2 log 2nd
C . By (3), we prove

I(X1, · · · , Xn; Π) ≥ C log
nd

C
− C

2
log

2nd

C
=
C

2
log

nd

C
− C

2
=
C

2
log

nd

2C
.

This finishes the proof of the Lemma.
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(d) sparseness = 0.06

Figure 1: Communication-MSE trade-off on the synthetic dataset generated from t-distribution. The
x-axis is the average number of bits sent for each dimension, and the y-axis is log(MSE).

By (2), we prove that the expected communication cost of Π is at least C2 log nd
2C bits w.r.t. D. Then

Theorem 3.1 follows from the minimax principle.

4 Experiments

We have conducted experiments comparing our DME protocol with the variable length coding method
(the best in [20]) and the methods in [2, 23] on their MSE-communication trade-off, as well as the
performance in distributed learning tasks that use DME as a subroutine, including K-means clustering
and power iteration. The algorithm in [22] doesn’t specify an appropriate encoding method and
directly sends floating points, and thus the cost is worse than that of [2, 23].

4.1 DME

In the first set of experiments, we compare our new protocol with that of [2, 23, 20] on the DME
problem directly, in terms of the MSE-communication trade-off. To see how the performances of the
protocols are affected by the sparseness of the input, we generated synthetic datasets with varying
spareness. Specifically, we generated 16 vectors, each held by a different client. Each vector has
10000 dimensions, whose values are generated independently from student’s t-distribution. This data
set has an empirical sparseness of 0.60, and the results are shown in Figure 1(a).

We used two ways to create sparser data. First, we scaled up the data on each nodes by a different
factor, which is also generated from t-distribution. This resulted in a data set with sparseness 0.36,
and the experimental results are shown in Figure 1(b), which confirms the effectiveness of using a
global quantization step size when data is unbalance across clients. Second, we randomly chose 30%
and 10% of the dimensions and set the rest to 0. This resulted in two data sets with sparseness 0.15
and 0.06, respectively, and the experimental results are shown in Figure 1(c) and Figure 1(d). These
results render that the sparser and/or less balance (across clients) the data is, the higher performance
gain our new protocol has. The same phenomenon is also observed in the next two tasks.

In Figure 1 (a)(c)(d), the data sets used do not have data unbalance across different clients (meaning
the coordination round is effectively useless), and the results are still better than previous methods.

4.2 Distributed K-Means

We then test the performances for distributed K-means. In each iteration of the distributed K-means
algorithm, the server broadcasts the current centroids of the clusters to all clients. Each client updates
the centroids based on its local data, and then sends back the updated centroids to the server. The
server then computes the average of these centroids for each cluster. This is exactly K instances of
the DME problem, except that average should be weighted by the cluster size at each client. Thus,
we first scale up the centroids by the cluster size, and then apply the DME protocols.

We used the MNIST [13] data set, uniformly or non-uniformly distributed across 10 clients. The
number of clusters and iterations is set to 10 and 30 respectively. The results are shown in Figure 2,
where we used different values of k (quantization level) for Suresh et al.’s algorithm, k = 32 for less
communication and k = 512 for less error, and other methods are tuned to achieve the same objective.
The results show that with the same final objective, our algorithm has less communication cost.
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Figure 2: Distributed K-Means on MNIST dataset distributed among 10 workers. The x-axis is the
average number of bits sent for each dimension, accumulated over the iterations, and the y-axis is the
objective function value of K-Means. In (a) and (b) data is uniform distributed, while in (c) and (d)
data is non-uniform distributed, every worker has 1000, 4000, 7000, 10000 or 13000 images.
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Figure 3: Distributed power iteration on MNIST dataset distributed among 100 workers. The x-axis is
the averaged number of bits sent for each dimension, which scales linearly to the number of iterations,
and the y-axis is the `2 distance between the current estimate of eigenvector and the ground-truth
eigenvector. In (a) and (b) data is uniform distributed, while in (c) and (d) data is non-uniform
distributed, every worker has 100, 400, 700, 1000 or 1300 images.

4.3 Distributed Power Iteration

The second learning task we tested is the distributed power iteration algorithm. The number of clients
is set to 100 and the number of iterations is set to 15. In this algorithm, the server broadcasts the
current estimate of the eigenvector to all clients, then each client updates the eigenvector based on
one power iteration on its local data, and sends back the compressed eigenvector to the server. The
server updates the current estimate of eigenvector with the average of all the received eigenvectors.
The results on the MNIST data set are reported in Figure 3, where we used different values of k
(quantization level) for Suresh et al.’s algorithm, k = 32 for less communication and k = 512 for less
error, and other methods are tuned to achieve the same error. It also shows that our DME protocol
uses less communication to achieve the same error.
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