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Abstract

One-dimensional range queries, as one of the most basic type of queries in databases, have been

studied extensively in the literature. For large databases, the goal is to build an external index that is

optimized for disk block accesses (or I/Os). The problem is well understood in the static case. Theoret-

ically, there exists an index of linear size that can answer a range query in O(1 + K

B
) I/Os, where K is

the output size andB is the disk block size, but it is highly impractical. In practice, the standard solution
is the B-tree, which answers a query in O(log

B

N

M
+ K

B
) I/Os on a data set of size N , whereM is the

main memory size. For typical values of N ,M , and B, log
B

N

M
can be considered a constant.

However, the problem is still wide open in the dynamic setting, when insertions and deletions of

records are to be supported. With smart buffering, it is possible to speed up updates significantly to o(1)
I/Os amortized. Indeed, several dynamic B-trees have been proposed, but they all cause certain levels of

degradation in the query performance, with the most interesting tradeoff point at O( 1

B
log N

M
) I/Os for

updates and O(log N

M
+ K

B
) I/Os for queries. In this paper, we prove that the query-update tradeoffs of

all the known dynamic B-trees are optimal, when log
B

N

M
is a constant. This implies that one should not

hope for substantially better solutions for all practical values of the parameters. Our lower bounds hold

in a dynamic version of the indexability model, which is of independent interests. Dynamic indexability

is a clean yet powerful model for studying dynamic indexing problems, and can potentially lead to more

interesting lower bound results.

∗A preliminary version of the paper appeared in PODS’09.
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1 Introduction

The B-tree [7] is a fundamental external index structure used in nearly all database systems. It has both

very good space utilization and query performance. External indexes are usually analyzed in the standard

I/O model [1]. The model parameters include N , the size of the data set to be stored in the index, M , the
internal memory size, and B, the disk block size. All of them are measured in terms of data records. In this
model, internal computation is free, and we only measure the number of blocks accessed, simply called I/Os,

during an operation. In the I/O model, the B-tree occupies O(NB ) disk blocks, and supports range reporting
queries in O(logB N + K

B ) I/Os where K is the output size. More precisely, supposing each data record is
associated with a key from a totally ordered universe, a range (reporting) query retrieves all the data records

whose keys are in a given range. Due to the large fanout of the B-tree, for most practical values ofN and B,
the B-tree is very shallow and logBN is essentially a constant. In addition, we can store the topΘ(logBM)
levels of the B-tree in the internal memory, further lowering its effective height to O(logB

N
M ) (we assume

N > MB so that this is always positive). In practice, this means that we can usually get to the desired leaf
with merely two or three I/Os, and then start pulling out results.

1.1 Dynamic B-trees

If one wants to update the B-tree directly on disk, it is also well known that it takes O(logB N) I/Os. Things
become much more interesting if we make use of the internal memory buffer to collect a number of updates

and then perform the updates in batches, lowering the amortized update cost significantly. For now let us

focus on insertions only; deletions are in general much less frequent than insertions, and there are some

generic methods for dealing with deletions by converting them into insertions of “delete signals” [4, 21].

The idea of using a buffer space to batch up insertions has been well exploited in the literature, especially

for the purpose of managing archival data, like transaction records and various logs, where there are much

more insertions than queries.

The LSM-tree [21] was the first along this line of research, by applying the logarithmic method [10] to

the B-tree. Fix a parameter 2 ≤ ℓ ≤ B. It builds a collection of B-trees of sizes up to M, ℓM, ℓ2M, . . . ,
respectively, where the first one always resides in memory. An insertion always goes to the memory-resident

tree; if the first i trees are full, they are merged together with the (i + 1)-th tree. IfM is large enough, we
can do a (i + 1)-way merge in linear I/Os; ifM is so small that only two-way merges are allowed, we can
merge them from small to large, the total cost is still linear as the sizes of the B-trees are geometrically

increasing. Standard analysis shows that the amortized insertion cost is O( ℓB logℓ
N
M ). A range query takes

O(logBN logℓ
N
M + K

B ) I/Os since O(logℓ
N
M ) trees need to be queried. Using fractional cascading [13],

the query cost can be improved to O(logℓ
N
M + K

B ) without affecting the (asymptotic) size of the index and
the update cost [9].

Later Jermaine et al. [18] proposed the Y-tree also for the purpose of lowering the insertion cost. The

Y-tree can be seen as a variant of the buffer tree [4]. It is an ℓ-ary tree, where each internal node is associated
with a bucket storing all the elements to be pushed down to its subtree. The bucket is emptied only when it

has accumulated Ω(B) elements. Although [18] did not give a formal analysis, it is not difficult to derive
that its insertion cost is O( ℓB logℓ

N
M ) and query cost O(logℓ

N
M + K

B ), namely, the same as those of the
LSM-tree with fractional cascading. Around the same time Buchsbaum et al. [12] independently proposed

the buffered repository tree in a different context, with similar ideas and the same bounds as the Y-tree.

In order to support even faster insertions, Jagadish et al. [17] proposed the stepped merge tree, a variant

of the LSM-tree. At each level, instead of keeping one tree of size ℓiM , they keep up to ℓ individual trees.
When there are ℓ level-i trees, they are merged to form a level-(i+1) tree (assumingM > ℓB). The stepped
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query insertion

LSM-tree [21] with fractional cascading

Y-tree [18] O
(

logℓ
N
M + K

B

)

O
(

ℓ
B logℓ

N
M

)

buffered repository tree [12]

stepped merge tree [17] with fractional cascading O
(

ℓ logℓ
N
M + K

B

)

O
(

1
B logℓ

N
M

)

Table 1: Query/insertion upper bounds of previously known B-tree indexes, for a parameter 2 ≤ ℓ ≤ B.

merge tree has an insertion cost of O( 1
B logℓ

N
M ), lower than that of the LSM-tree. But the query cost is a

lot worse, reaching O(ℓ logB N logℓ
N
M + K

B ) I/Os since ℓ trees need to be queried at each level. Again the
query cost can be improved to O(ℓ logℓ

N
M + K

B ) using fractional cascading.
The current best known results are summarized in Table 1. Typically ℓ is set to be a constant [17,

18, 21], at which point all the indexes have the same asymptotic performance of O(log N
M + K

B )1 query
and O( 1

B log N
M ) insertion. Note that the amortized insertion cost of these dynamic B-trees is usually a

lot smaller than one I/O, hence much faster than updating the B-tree directly on disk. The query cost is,

however, substantially worse than the O(logB
N
M ) query cost of the static B-tree by an Θ(logB) factor

(ignoring the output term O(K/B) which must always exist). As typical values of B range from hundreds
to thousands, we are expecting a 10-fold degradation in query performance for these dynamic B-trees. Thus

the obvious question is, can we lower the query cost while still allowing for fast insertions?

In particular, the B-tree variants listed in Table 1 are all quite practical ([17, 18, 21] all presented exper-

imental results), so one may wonder if there are some fancy complicated theoretical structures with better

bounds that have not been found yet. For the static range query problem, it turned out to be indeed the

case. A somehow surprising result by Alstrup et al. [2] shows that it is possible to achieve linear size and

O(K) query time in the RAMmodel. This result also carries over to external memory, yielding a disk-based
index with O(NB ) blocks and O(1+ K

B )-I/O query cost. However, this structure is exceedingly complicated,
and no one has ever implemented it. In the dynamic case, the exponential tree [3] and the dynamic range

reporting structure of Mortensen et al. [20] beat the query bounds in Table 1, but their insertion costs are

always ω(1), no matter how large B is. On the other hand, the insertion cost in Table 1 is less than 1 as
long as B ≫ log N

M (say, for constant ℓ). Until today no one has improved the tradeoff in Table 1, for B
sufficiently large.

1.2 Known lower bounds

Lower bounds for this and related problems have also been sought for. For lower bounds we will only

consider insertions; the results certainly also hold for the more general case where insertions and deletions

are both present. A closely related problem to range queries is the predecessor problem, in which the index

stores a set of keys, and the query asks for the preceding key for a query key. The predecessor problem

has been extensively studied in various internal memory models, and the bounds are now tight in almost all

cases [8]. In external memory, Brodal and Fagerberg [11] proved several tradeoffs between the insertion

cost and the query cost for the dynamic predecessor problem. Their lower bound model is a comparison

based external memory model. However, a closer look at their proof reveals that one of their techniques can

actually be adapted to prove the following tradeoff for range queries for any B = ω(1): If an insertion takes
amortized u I/Os and a query takes worst-case q +O(KB ) I/Os, then we have

q · log(uB log2 N
M ) = Ω(log N

M ), (1)

1We use log x to denote loge x in this paper.
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provided u ≤ 1/ log3N and N ≥ M2. For the most interesting case when we require q = O(log N
M ),

(1) gives a meaningless bound of u = Ω(1/B log2 N
M ), as u ≥ 1/B trivially. In the other direction, if

u = O( 1
B log N

M ), the tradeoff (1) still leaves an Θ(log log N
M ) gap to the known upper bound for q.

1.3 Our results

In this paper, we prove a query-insertion tradeoff of

u =

{

Ω
( q
BB

1/q
)

, for q < α logB, any constant α;

Ω
(

logB
B log q

)

, for all q,
(2)

for any dynamic range query index with a query cost of q + O(K/B) and an amortized insertion cost of
u, provided N ≥ 2MB2. For most reasonable values of N,M , and B, we may assume that NM = BO(1),

or equivalently that the B-tree built on N keys has constant height. Let us first consider the following three
most interesting tradeoff points:

(i) If we require q = O(log N
M ) = O(logB), the first branch of (2) gives u = Ω( 1

B logB), matching
the known upper bounds in Table 1 for constant ℓ. In the other direction, if u = O( 1

B log N
M ) =

O( 1
B logB), we have q = Ω(logB) = Ω(log N

M ), which is again tight.

(ii) If we want constant query cost q = O(1), then the first branch of (2) gives u = 1
BB

Ω(1), an exponen-

tial blowup from case (i). This also matches the first row of Table 1 for ℓ = BΘ(1).

(iii) If we want the smallest insertion cost u = O( 1
B ), the second branch of (2) yields q = BΩ(1), again an

exponential blowup from case (i), and matches the second row of Table 1 for ℓ = BΘ(1).

Rewriting the upper bounds in Table 1 will better reveal the tightness of the tradeoff. For the first

row, from q = O(logℓB) we get ℓ = BO(1/q), so u = O( ℓB logℓB) = O( qBB
O(1/q)), matching the

first branch of (2). For the second row, from q = O(ℓ logℓB) we get ℓ = Ω( q
logB log q

logB ), so u =

O( 1
B logℓB) = O

(

logB
B log(q/ logB)

)

, which matches the second branch of (2) except in the narrow range

ω(logB) ≤ q ≤ o(log1+ǫB), for any small constant ǫ > 0, whereas in this range, the gap between the

upper and lower bounds is merely Θ
(

log q
log(q/ logB)

)

= o(log logB). Figure 1 pictorially illustrates the entire

query-insertion tradeoff for both upper and lower bounds.

Our results establish the optimality of dynamic B-trees in the parameter range N
M = BO(1). This,

however, may raise the theoretical question whether they are optimal for all values ofN , ideally unbounded
in terms of B. The answer is no, unfortunately. We will discuss more on this issue and outline some right
open questions to ask towards the end of the paper.

We obtain our lower bounds in a model which we call dynamic indexability. It is a natural dynamic

version of the indexability model [14], which was originally proposed by Hellerstein, Koutsoupias, and

Papadimitriou [15]. To date, most known lower bounds for indexing problems are proved in this model [5,

6, 14, 19, 22]. Intuitively speaking, this model assumes that the query cost is only determined by the number

of disk blocks that hold the actual query results, and ignores all the search cost that we need to pay to find

these blocks (see Section 2 for details). Ignoring the search cost may seem too permissive, and indeed the

model yields trivial bounds for static one-dimensional problems. In fact, until today this model has been

used exclusively for two or higher dimensional problems. In the JACM article [14] that summarizes most

of the results on indexability, the authors state: “However, our model also ignores the dynamic aspect of the
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q

uB

Θ(1) Θ(logB) Θ(log1+ǫ B) BΘ(1)

BΘ(1)

Θ(qBΘ(1/q))

Θ(logB)

O
(

logB
log(q/ logB)

)

Ω
(

logB
log q

)

Θ
(

logB
log logB

)

Θ
(

logB
log q

)

Θ(1)

upper bounds
lower bounds

tight bounds

Figure 1: The query-insertion tradeoff, assuming logB
N
M = O(1). The vertical axis shows uB instead of u

to avoid repeating the 1
B factors in the figure.

problem, that is, the cost of insertion and deletion. Its consideration could be a source of added complexity,

and in a more general model the source of more powerful lower bounds.” In this respect, another contribution

of this paper is to add dynamization to the model of indexability, making it more powerful and complete.

In particular, our lower bound results suggest that, although static indexability is useful only in two or more

dimensions, dynamization makes it a suitable model for the more basic one-dimensional indexing problems.

As a final remark, our lower bounds actually hold for the simpler multi-point queries, where the keys of

the data records do not have to be unique, and the query simply retrieves all data records with a given key.

It is clear that multi-point queries are special range queries.

2 Dynamic Indexability

2.1 Static indexability

We first review the framework of static indexability before introducing its dynamization. We follow the

notation from [14]. A workload W is a tuple W = (D, I,Q) where D is the domain of all possible
elements, I ⊆ D is a finite subset of D (the instance), and Q is a set of subsets of I (the query set). For
example, for range queries, D is a totally ordered universe of all possible keys (in this model we do not
distinguish between an element and its key), I is a set of keys, and Q consists of I ∩ [x, y] for all x, y ∈ D.
We usually use N = |I| to denote the number of elements in the instance. An indexing scheme S = (W,B)
consists of a workload W and a set B of B-subsets of I such that B covers I , i.e., I ⊆ ⋃

β∈B β. The
B-subsets of B model the data blocks of an index structure, while any auxiliary structures connecting these
data blocks (such as pointers, splitting elements) are ignored from this framework. The size of the indexing

scheme is |B|, the number of blocks. In [14], an equivalent parameter, the redundancy r = B|B|/N is
used to measure the space complexity of the indexing scheme. The cost of a query Q ∈ Q is the minimum
number of blocks whose union coversQ. Note that here we have implicitly assumed that the query algorithm
can find these blocks to cover Q with no cost, essentially ignoring the “search cost”. The access overhead
A is the minimum A such that any query Q ∈ Q has a cost at most A · ⌈|Q|/B⌉. Note that ⌈|Q|/B⌉ is the
minimum number of blocks to access so as to report all elements in Q, so the access overhead A measures
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how much more multiplicatively we need to access in order to retrieve Q. For some problems using a single
parameter for the access overhead is not expressive enough, and we may split it into a multiplicative factor

plus an additive term. More precisely, an indexing scheme with access overhead (A0, A1) must answer any
query Q ∈ Q with cost at most A0 +A1 · ⌈|Q|/B⌉ [6].
Except for some trivial facts, all the lower bound results obtained under this model are expressed as

a tradeoff between r and A (or (A0, A1)), for some construction of the workload. For example, a two-
dimensional range query index has a tradeoff of r = Ω(log(N/B)/ logA) [5, 14]; for the 2D point enclosure
problem, the dual of range queries, we have the tradeoff A0A

2
1 = Ω(log(N/B)/ log r) [6]. These results

show that, even if we ignore the search cost, we can still obtain nontrivial lower bounds for these problems.

These lower bounds have also been matched with corresponding indexes that do include the search cost, for

typical values of r and A [5, 6]. This means that the inherent difficulty for these indexing problems roots
from how we should layout the data objects on disk, not the search structure on top of them. By ignoring the

search component of an index, we obtain a simple and clean model, which is still powerful enough to reveal

the inherent complexity of indexing. It should be commented that the indexability model is very similar

in spirit to the cell probe model of Yao [23], which has been successfully used to derive many internal

memory lower bounds. But the two models are also different in some fundamental ways; please see [14] for

a discussion.

Nevertheless, although the indexability model is appropriate for two-dimensional problems, it seems

to be overly strong for the more basic one-dimensional range query problem. In one dimension, we could

simply lay out all the elements in the key order sequentially on disk, which gives us a trivial indexability

index with r = A = 1! On the other hand, designing an actual index in the I/O model that matches
these bounds (up to constant factors) is highly nontrivial [2], and it is quite surprising that this is actually

achievable.

2.2 Dynamic indexability

In the dynamic case, the domain D remains static, but the instance set I could change. Correspondingly,
the query set Q changes and the index also updates its blocks B to cope with the changes in I . In the static
model, there is no component to model the main memory, which is all right since the memory does not help

reduce the worst-case query cost anyway. However, in the dynamic case, the main memory does improve the

update cost significantly by buffering the recent updates, so we have to include a main memory component

in the indexing scheme. More precisely, the workload W is defined as before, but an indexing scheme is
now defined as S = (W,B,M) whereM is a subset of I with size at most M such that the blocks of B
together withM cover I . The redundancy r is defined as before, but the access overhead A is now defined
as the minimum A such that any Q ∈ Q can be covered byM and at most A · ⌈|Q|/B⌉ blocks from B.
We now define the dynamic indexing scheme. Here we only consider insertions as our focus is to prove

lower bounds. We first define a dynamic workload.

Definition 1 A dynamic workload W is a sequence of N workloads W1 = (D, I1,Q1), . . . , WN =
(D, IN ,QN ) such that |Ii| = i and Ii ⊂ Ii+1 for i = 1, . . . ,N − 1.

Essentially, we insert N elements into I one by one, resulting in a sequence of workloads. Meanwhile, the
query set Q changes according to the problem at hand.

Definition 2 Given a dynamic workloadW = (W1, . . . ,WN ), a dynamic indexing scheme S is a sequence

of N indexing schemes S1 = (W1,B1,M1), . . . ,SN = (WN ,BN ,MN ). Each Si is called a snapshot of

5



round 1:

round 2:

keys

time

round 3:

· · ·

round B:

snapshot

snapshot

snapshot

snapshot

group 1 group 2 . . . . . . group 2MB

Figure 2: Construction of the workload.

S. We say that S has redundancy r and access overhead A if for all i, Si has redundancy at most r and access
overhead at most A.

A third parameter u, the update cost, is defined as follows.

Definition 3 Given a dynamic indexing scheme S, the update cost from Si to Si+1 is |Bi+1 − Bi|, i.e., the
number of new blocks created in Bi+1. The (amortized) update cost of S is the minimum u such that the
sum of all the update costs from Si to Si+1 for all 0 ≤ i < N is uN , where we set B0 = ∅.

Note that the definition above ignores the cost of deleting blocks in Bi. Indeed, the indexing scheme S does

not need to delete any blocks, if the update cost is the main concern. In any case, considering both the cost of

creating blocks and removing blocks will not affect u by more than a factor of 2, so we choose the definition
above to simplify the model.

Our definition of the dynamic indexability model maintains the spirit of the static case: we will only

focus on the cost associated with the changes in the blocks holding the actual data objects, while ignoring

the search cost of finding these blocks and deciding how they should be changed.

Two extreme cases for range query indexes. As we will see shortly, all our lower bounds are expressed as

tradeoffs between the access overhead A and the update cost u; the redundancy r turns out to be irrelevant.
Considering the following two extreme cases for a range query index will give us some intuitive ideas on

the tradeoff between A and u.
We will use the workload construction as illustrated in Figure 2 with N = 2MB2 keys. The keys are

divided into 2MB groups of B each so that they are consecutive within every group but non-overlapping
across different groups. We perform the insertions inB rounds; in each round, we simply add one key to each
group. The dynamic indexing scheme S correspondingly has N snapshots S1 = (W1,B1,M1), . . . ,SN =
(WN ,BN ,MN ). We will only consider the subsequence S

′ consisting of the snapshots S2MB , S2·2MB , . . . ,
SN , i.e., those after every round. The total update cost of this subsequence is obviously no higher than that
of the entire sequence. We will only consider queries that report one group of at most B keys.
The first extreme case is the minimum possible update cost u = 1/B. In this case, S′ is only allowed

to add one block for every B insertions. In every round, all groups each have a new key arriving. Since the
memory has size M , at least 2MB −M groups will have their new keys written in newly created blocks.
These blocks do not contain any keys from the previous rounds. Thus after B rounds, there are at least
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2MB −MB = MB groups each of which is completely shattered: the B keys are all in different blocks.
Querying these groups requires an access overhead of A = B— the worst possible access overhead.
The second extreme case is minimum possible access overhead A = 1. In this case, in any snapshot of

S
′, all the keys in every group must reside in one block, and possibly also in memory. However, since the

memory has sizeM and there are 2MB groups, at leastMB of them must have all their keys on disk in all
the snapshots of S′. This means that in every snapshot of S′, a new block is created for each of these groups.

Thus the total update cost isMB2, which means that u ≥ 1/2. One can easily push this to u ≥ 1− ǫ for any
constant ǫ > 0 using a larger N . This is almost tight. For an upper bound, we can simply store all the keys
in order such that each block contains between B/2 and B keys. To insert a new key, we just add it to the
corresponding block; if the block already contains B keys, we split it into 2 blocks. Since a split happens
once every Ω(B) insertions, the amortized update cost is u = 1 + O( 1

B ). The redundancy of this simple
scheme is A = 2.

3 Lower Bounds

We prove the following tradeoff for any range query index under the dynamic indexability model.

Theorem 1 Let S be any dynamic indexing scheme for range queries with access overhead A and update
cost u. Provided N ≥ 2MB2, we have

u =

{

Ω
(

A
B ·B1/A

)

, for A < α logB, any constant α;

Ω
(

logB
B logA

)

, for all A.

Note that this lower bound does not depend on the redundancy r, meaning that the index cannot do better
by consuming more space. Since a query bound of q+O(K/B) implies that any query can be answered by
accessing O(q · ⌈K/B⌉) blocks, we can replace A with q in the theorem and get the tradeoff in (2), but bear
in mind that Theorem 1 is actually stronger than (2).

To prove Theorem 1, below we first define a ball-shuffling problem and show that any dynamic indexing

scheme for range queries yields a solution to the ball-shuffling problem. Then we prove a lower bound for

the latter.

3.1 The ball-shuffling problem and the reduction

We now define the ball-shuffling problem, and present a lower bound for it. There are b balls and t bins,
β1, . . . , βt. The balls come one by one. Upon the arrival of each ball, we need to find some bin βi to put
it in. We use |βi| to denote the current number of balls in βi. The cost of putting the ball into βi is defined
to be |βi| + 1. Instead of directly putting a ball into a bin, we can do so with shuffling: first collect all the
balls from one or more bins, add the new ball to the collection, and then arbitrarily allocate these balls into a

number of empty bins. The cost of this operation is the total number of balls involved, i.e., if J denotes the
set of indices of the bins collected, the cost is

∑

i∈J |βi| + 1. Note that directly putting a ball into a bin can
be seen as a special shuffle, where we collect balls from only one bin and allocate the balls back to one bin.

Our main result for the ball-shuffling problem is the following lower bound, whose proof is deferred to

Section 3.2.

Theorem 2 The cost of any algorithm for the ball-shuffling problem is at least

(i) Ω(tb1+1/t) for t < α log b where α is an arbitrary constant; and
(ii) Ω(b logt b) for any t.
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The reduction. Suppose there is a dynamic indexing scheme S = (S1, . . . ,SN ) for range queries with
update cost u and access overhead A. Assuming N ≥ 2MB2, we will show how this leads to a solution

to the ball-shuffling problem on b = B balls and t = A bins with cost O(uB2). This will immediately
translate the tradeoff in Theorem 2 to the desired tradeoff in Theorem 1.

We divide the insertions of N elements into batches of 2MB2, and for each batch, we use the construc-

tion in Figure 2. Since the amortized cost for handling every insertion is u, at least one of the batches has a
total update cost of at most O(uMB2). We will just focus on one such batch. As before, we only consider
the subsequence S

′ of B snapshots after each round in the batch. Let Bi be the collection of blocks after
round i, i = 1, . . . , B. Note that in the construction of Figure 2, we only consider range queries that retrieve
a group, they are just multi-point queries if we use the same key for all elements in each group. Thus, our

lower bounds will hold for multi-point queries as well.

Recall that the update cost from a snapshot S = (W,B,M) to its succeeding snapshot S ′ = (W ′,B′,M′)
is the number of blocks that are new in B′ compared with B. We now define the element update cost to be the
number of elements in these new blocks, i.e.,

∑

β∈B′−B |β|. Since each block contains at most B elements,
the element update cost is at most B times larger than the update cost. Thus, S′ has an element update cost

of O(uMB3). The element update cost can be associated with the elements involved, that is, it is the total
number of times that an element has been in a newly created block, summed over all elements.

If a group G has at least one element appearing in main memory in some snapshot of S′, then it is said to

be contaminated. Since at mostMB elements can ever reside in main memory in the B snapshots, at most
MB groups are contaminated. Since the total element update cost of S

′ is O(uMB3), among the at least
MB uncontaminated groups, at least one group, say G, has an element update cost of O(uB2). Note that
the element update cost ofG over the whole sequence is

∑B−1
i=1

∑

β∈Bi+1−Bi
|β∩G|. LetG1, . . . , GB be the

sets of elements of this group after every round. Since this group is uncontaminated, all elements inGi must
be completely covered by Bi·2MB for each i = 1, . . . , B. Since Gi has at most B elements and S has access

overhead A, Gi should always be covered by at most A blocks in Bi·2MB . For each i, let βi,1, . . . , βi,A be

the blocks of Bi·2MB that coverGi, let β̂i,j = βi,j ∩G, j = 1, . . . , A. Note that these β̂i,j’s may overlap and

some of them may be empty. Let B̂i = {β̂i,1, . . . , β̂i,A}. Consider the transition from B̂i to B̂i+1. We can

as before define its element update cost as
∑

β̂∈B̂i+1−B̂i
|β̂|. Let us compare this element update cost with

the actual element update cost from Bi·2MB to B(i+1)·2MB for the elements of G, i.e.,
∑

β∈Bi+1−Bi
|β ∩G|.

We see that the former is no higher than the latter: We count an element in
∑

β̂∈B̂i+1−B̂i
|β̂| if it resides in

a new block β̂ ∈ B̂i+1. In this case, we must have also counted it in
∑

β∈Bi+1−Bi
|β ∩ G|, because if β̂ is

new, β must be new as well. Therefore, the total element update cost of the sequence B̂1, . . . , B̂B is at most
O(uB2).
Now we claim that the sequence B̂1, . . . , B̂B gives us a solution to the ball-shuffling problem of B balls

and A bins with cost at most its element update cost. Indeed, if we treat the blocks in B̂i as bins and the
B elements in the group as balls, this is almost exactly the ball-shuffling problem, with the element update
cost from B̂i to B̂i+1 equal to the shuffling cost of adding the (i+ 1)-st ball. One technical issue is that one
element may appear in multiple blocks in a B̂i as we allow redundancy in the indexing scheme. Below we
give a more precise construction of a solution to the ball-shuffling problem from B̂1, . . . , B̂B that takes this
issue into consideration. Again suppose β̂i,1, . . . , β̂i,A are the blocks in B̂i. Let β′i,1, . . . , β′i,A be the bins
after the i-th element (or equivalently, the i-th ball) has been added. In the construction we will maintain
the invariant that β′i,j ⊆ β̂i,j for all j and β

′
i,j1

∩ β′i,j2 = ∅ for j1 6= j2. The second condition ensures that

elements are not duplicated. At i = 1, we put the first ball into any β′1,j where β̂1,j is not empty, establishing

the initial invariant. As we go from B̂i to B̂i+1, suppose without loss of generality that the first k blocks

8



change, i.e., β̂i,1, . . . , β̂i,k change to β̂i+1,1, . . . , β̂i+1,k, while the remaining A− k blocks remain the same.

We will correspondingly shuffle the bins β′i,1, . . . , β
′
i,k, and allocate the balls following β̂i+1,1, . . . , β̂i+1,k,

ensuring that β′i+1,j ⊆ β̂i+1,j , while removing all the duplicated balls. More precisely, we use the following

allocation procedure: Let R = β′i+1,k ∪ · · · ∪ β′i+1,A be the set of balls in the other A− k bins that are not

changing. For each of j = 1, . . . , k in order, we set β′i+1,j = β̂i+1,j−R−β′i+1,1−· · ·−β′i+1,j−1. It is clear

that the invariant above is maintained after this allocation procedure. Also note that since the new ball must

appear in at least one of the β̂i+1,j’s, j = 1, . . . , k, and must not appear in R, this procedure will allocate
it in one of the bins β′i+1,j , so this indeed leads to a valid solution to the ball-shuffling problem. Finally, by

the invariant β′i+1,j ⊆ β̂i+1,j , the cost of this shuffle must be no larger than the element update cost form B̂i
to B̂i+1. Therefore, we obtain a solution to the ball-shuffling problem with cost O(uB2). This completes
the reduction.

Tightness of the bounds. By the above reduction and the tightness of our lower bounds (2) as illustrated

in Figure 1, the lower bounds for the ball shuffling problem in Theorem 2 must also be tight. Through the

reduction, one can certainly convert the existing dynamic B-trees to ball-shuffling solutions that match the

lower bounds, but this will be painful and non-illustrative. Below we give direct and much simpler solutions

to the ball-shuffling problem, which hopefully gives us more insight into the problem itself.

For t ≥ 2 log b, we use the following shuffling strategy. Let x = t/ log b ≥ 2. Divide the t bins evenly
into logx b groups of t/ logx b each. We use the first group to accommodate the first t/ logx b balls. Then we
shuffle these balls to one bin in the second group. In general, when all the bins in group i are occupied, we
shuffle all the balls in group i to one bin in group i+ 1. The total cost of this algorithm is obviously b logx b
since each ball has been shuffled logx b times. To show that this algorithm actually works, we need to show
that all the b balls can be indeed accommodated. Since the capacity of each group increases by a factor of
t/ logx b, the capacity of the last group is

(

t

logx b

)logx b

=

(

xt

x logx b

)logx b

= b

(

t

x logx b

)logx b

= b

(

log b

logx b

)logx b

= b(log x)logx b ≥ b.

This corresponds to the upper bound curve in Figure 1 from q = Θ(logB) to q = BΘ(1).

Part (i) of the theorem concerns with t = O(log b). For these small values of t we need to deploy a
different strategy. We always put balls one by one to the first bin β1. When β1 has collected b

1/t balls, we

shuffle all the balls to β2. Afterward, every time β1 reaches b
1/t, we merge all the balls in β1 and β2 and put

the balls back to β2. For β2, every time it has collected b
2/t balls from β1, we merge all the balls with β3. In

general, every time βi has collected b
i/t balls, we move all the balls to βi+1. Let us compute the total cost

of this strategy. For each shuffle, we charge its cost to the destination bin. Thus, the cost charged to β1 is

at most (b1/t)2 · b1−1/t = b1+1/t, since for every batch of b1/t balls, it pays a cost of at most (b1/t)2 to add
them one by one, and there are b1−1/t such batches. In general, for any bin βi, 1 ≤ i ≤ t, the balls arrive in
batches of b(i−1)/t, and the bin clears itself after every b1/t such batches. The cost for each batch is at most
bi/t, the maximum size of βi, so the cost for all the b

1/t batches before βi clears itself is at most b
(i+1)/t.

The bin clears itself b/bi/t = b1−i/t times, so the total cost charged to βi is b
1+1/t. Therefore, the total cost

charged to all the bins is tb1+1/t. This gives us the tight upper bound curve in Figure 1 from q = Θ(1) to
q = Θ(logB).
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3.2 Proof of Theorem 2

We first make a few useful observations with respect to the ball-shuffling problem. Since as defined the

balls are indistinguishable, and so are the bins, then during the ball shuffling process, the current state can

be completely characterized by the multiset of bin sizes S = {|β1|, . . . , |βt|}. Then during a shuffle, it is
unreasonable to create a bin with size the same as one of the bins this shuffle has collected, if one wants

to minimize the shuffling cost. Realizing this, if the sizes of the bins before and after the shuffle are S and
S′, respectively, then the cost of the shuffle can be effectively written as

∑

(S′ − S), where “−” should be
understood as (multi)set difference taking into account the multiplicities, and “

∑

X” denotes the summation
of the numbers in the multiset X.

Proof of part (ii). We first prove the easier part of the theorem, that the ball-shuffling cost with b balls and
t bins is at least Ω(b logt b). We will take an indirect approach, proving that any algorithm that handles the
balls with an average cost of u using t bins cannot accommodate (2t)⌈2u⌉ balls or more. This means that
b < (2t)⌈2u⌉, or u = Ω(logt b), so the total cost of the algorithm is ub = Ω(b logt b).
We prove that b < (2t)2u by induction for all u ≥ 1 that is a multiple of 1

2 ; this suffices for showing

b < (2t)⌈2u⌉ for all values of u ≥ 1. When u = 1, clearly the algorithm has to put every ball into an
empty bin, so with t bins, the algorithm can handle at most t < (2t)2 balls. Now assume that the claim
is true for u, and we will show that it is also true for u + 1

2 . Equivalently we need to show that to handle

(2t)2u+1 balls, any algorithm using t bins has to pay an average cost of more than u + 1
2 per ball, or

(u + 1
2)(2t)2u+1 = (2tu + t)(2t)2u in total. We divide the (2t)2u+1 balls into 2t batches of (2t)2u each.

By the induction hypothesis, to handle the first batch, the algorithm has to pay a total cost of more than

u(2t)2u. For each of the remaining batches, the cost is also more than u(2t)2u, plus the cost of shuffling the
existing balls from previous batches. This amounts to a total cost of 2tu(2t)2u, and we only need to show
that shuffling the balls from previous batches costs at least t(2t)2u in total.
If a batch has at least one ball that is never shuffled in later batches, it is said to be a bad batch, otherwise

it is a good batch. The claim is that at most t of these 2t batches are bad. Indeed, since each bad batch has
at least one ball that is never shuffled later, the bin that this ball resides in cannot be touched any more. So

each bad batch takes away at least one bin from later batches and there are only t bins. Therefore there are at
least t good batches, in each of which all the (2t)2u ball have been shuffled later. This costs at least t(2t)2u,
and the proof completes.

The merging lemma. Part (ii) of the theorem is very loose for small values of t. If t ≤ α log b where
α is any constant, we can prove a much higher lower bound Ω(tb1+1/t), which later will lead to the more
interesting branch in the query-update tradeoff (2) of range queries. The rest of this section is devoted to the

proof of part (i) of Theorem 2. Note that it is important to prove the lower bound for an arbitrary constant

α, as there could be any hidden constant in the O(logB) query upper bound.
We first prove the following lemma, which restricts the way how an optimal algorithm might do shuf-

fling. We call a shuffle that allocates balls back to more than one bin a splitting shuffle, otherwise it is a

merging shuffle.

Lemma 1 There is an optimal algorithm that only uses merging shuffles.

Proof : For a shuffle, we call the number of bins that receive balls from the shuffle its splitting number.

A splitting shuffle has a splitting number at least 2, and a merging shuffle’s splitting number is 1. For an
algorithm A, let π(A) be the sequence of the splitting numbers of all the b shuffles performed by A. Below
we will show how to transform A into another algorithm A′ whose cost is no higher than that of A, while
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π(A′) is lexicographically smaller than π(A). Since every splitting number is between 1 and t, after a finite
number of such transformations, we will arrive at an algorithm whose splitting numbers are all 1, hence
proving the lemma.

LetA be an algorithm that uses at least one splitting shuffle, and consider the last splitting shuffle carried
out by A. Suppose it allocates balls to k bins. A′ will do the same as A up until its last splitting shuffle,
whichA′ will change to the following shuffle. A′ will collect balls from the same bins but will only allocate

them to k − 1 bins. Among the k − 1 bins, k − 2 of them receive the same number of balls as in A, while
the last bin receives all the balls in the last two bins used in A. So the only difference between A and A′

after this shuffle is two bins, say β1, β2 of A and β′1, β′2 of A′. Note that the cost of this shuffle is the same

for both A and A′. After this shuffle, suppose we have |β1| = x, |β2| = y, |β′1| = x+ y, |β′2| = 0 for some
x, y ≥ 1. Clearly, no matter what A′ does in the future, π(A′) is always lexicographically smaller than
π(A).
From now on A′ will mimic what A does with no higher cost. We will look ahead at the operations

that A does with β1 and β2, and decide the corresponding actions of A′. Note that A will do no more
splitting shuffles. Consider all the shuffles that A does until it merges β1 and β2 together, or until the end

if A never does so. For those shuffles that touch neither β1 nor β2, A′ will simply do the same. Each of

the rest of the shuffles involves β1 but not β2 (resp. β2 but not β1). Since the bins are indistinguishable,

for any such merging shuffle, we may assume that all the balls are put back to β1 (resp. β2). Suppose there

are a1 shuffles involving β1 and a2 shuffles involving β2. Assume for now that a1 ≤ a2. A′ will do the

following correspondingly. When A touches β1, A′ will use β′1; and when A touches β2, A′ will use β′2.
Clearly, for any shuffle that involves neither β1 nor β2, the cost is the same for A and A′. For a shuffle that

involves β1 but not β2, since before A merges β1 and β2, we have the invariant that |β′1| = |β1| + y, A′

pays a cost of y more than that of A, for each of these a1 shuffles. For a shuffle that involves β2 but not

β1, since we have the invariant that |β′2| = |β2| − y, A′ pays a cost of y less than that of A, for each of
these a2 shuffles. So A′ incurs a total cost no more than that of A. In the case a1 ≥ a2, when A touches
β1, A′ will use β′2; and when A touches β2, A′ will use β′1. A similar argument then goes through. Finally,
when A merges β1 and β2 together (if it ever does so), A′ will also shuffle both β′1 and β

′
2. Since we always

have |β1| + |β2| = |β′1| + |β′2|, the cost of this shuffle is the same for A and A′. After this shuffle, A and
A′ are in the same state. Thus we have transformed A into A′ with no higher cost while π(A′) is strictly
lexicographically smaller than π(A). Applying such transformations iteratively proves the lemma. �
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Figure 3: How a ball-shuffling process is modeled as a tree.
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The recurrence. In view of Lemma 1, we can model any ball-shuffling process with only merging shuffles

as a tree T . An example is shown in Figure 3. More precisely, each ball is modeled as a node in T , and
a bin is modeled as a subtree. Then the tree T is inductively defined as follows. If a node (ball) v lands
in an empty bin when it arrives, it is a leaf of T ; the bin (now containing only v) then corresponds to the
singleton subtree v. Otherwise, suppose v is merged with k ≥ 1 nonempty bins, then v has the k subtrees
corresponding these k bins as its subtrees. It is easy to see that the cost of the shuffle for accommodating v
is exactly the size of the subtree rooted at v, so we can correspondingly define the cost of T as the sum of
the sizes of all its subtrees. Let v1, . . . , vb be the b nodes of T in the arrival order. For each i, let T

(i) be the

portion of T formed by {v1, . . . , vi}, which is a forest. Note that the number of trees in T (i) is exactly the

number of bins being used after vi arrives. Thus the problem becomes finding the minimum cost of any T
subject to the condition that T (i) has at most t trees for all i. Of course, this tree formulation requires that
all balls be merged into one bin in the end, which is not necessarily the case for the ball-shuffling problem,

but this only has an additional cost of b.
Let ft(b) be the minimum cost of any T with b nodes such that T

(i) has at most t trees for all i. We
will lower bound ft(b) by induction on t and b. The base cases are ft(1) = 1 for any t, and f1(b) =
1 + 2 + · · · + b = 1

2b(b + 1) for any b. For t, b ≥ 2, consider the root of T , and suppose it has k subtrees

T1, . . . , Tk, ordered by the arrival times of their earliest members (see e.g. Figure 3). Because T
(i) has at

most t trees, T
(i)
1 must also have at most t trees. However, T

(i)
2 cannot have t trees for any i, because at

least one node in T1 arrives before any node of T2. If T
(i)
2 had t trees for some i, then T

(i)
1 and T

(i)
2 together

would have more than t trees. In general, we can argue that T
(i)
j has at most t− j + 1 trees for any i. Thus

Tj has a minimum cost of ft−j+1(xj), where xj is the subtree size of Tj . Considering all possible k and
ways to partition b− 1 nodes into k subtrees, we have

ft(b) ≥ min
k,x1+···+xk=b−1

ft(x1) + ft−1(x2) + · · · + ft−k+1(xk) + b.

In fact, we can attain this minimum cost by handling the first x1 balls using the optimal T1 with t bins, then
the next x2 balls using the optimal T2 with t − 1 bins, and so on so forth. Thus, we actually have a tight
recurrence:

ft(b) = min
k,x1+···+xk=b−1

ft(x1) + ft−1(x2) + · · · + ft−k+1(xk) + b.

If we define ft(0) = 0 for all t and allow the xi’s to be 0, we can remove k from consideration:

ft(b) = min
x1+···+xt=b−1

ft(x1) + ft−1(x2) + · · · + f1(xt) + b. (3)

Rewriting (3) as

ft(b) = min
x1

(

ft(x1) + x1 + min
x2+···+xt=b−1−x1

(ft−1(x2) + · · · + f1(xt) + b− x1)

)

,

we notice that the second min is exactly ft−1(b − x1) according to recurrence (3). Thus we obtain a
simplified recurrence:

ft(b) = min
0≤x<b

ft(x) + ft−1(b− x) + x. (4)

The+x term in (4) will create a lot of technical difficulties as one tries to solve the recurrence, so we perform
the following maneuver to make it into a +b term. Defining gt(b) = ft(b) + tb, (4) becomes

gt(b) − tb = min
0≤x<b

gt(x) − tx+ gt−1(b− x) − (t− 1)(b− x) + x
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⇔ gt(b) = min
0≤x<b

gt(x) + gt−1(b− x) + b. (5)

Below, based on (5) we will first prove that

gt(b) ≥
1

6
tb1+1/t (6)

for all t and b. This almost gives us what we want, but soon one realizes that b1/t becomes a constant that
approaches 1 when t = Ω(log b), so that 1

6tb
1+1/t − tb becomes negative. The constant 1

6 can be pushed to
1
2 if one is willing to spend more efforts (and by sacrificing the constant in front of 1/t), but that will not
help much. One intuitive explanation is that, although the recurrence (5) simplifies the derivation for gt(b),
it “blurs” the boundary between ft(b) and tb. Realizing that we just need to prove ft(b) = Ω(b log b) for
t = Θ(log b), we adopt a more direct approach for these t’s. More precisely, in the second phase of the

induction, we will prove that ft(b) ≥ b log2 b
ct directly using (4) for all t < α log b, where c is a sufficiently

large constant. Both phases of the induction will be on (t, b) in lexicographical order.

The induction, phase one. The base cases of (6) are easily established: For t = 1, g1(b) = f1(b) + b =
1
2b(b+ 1) + b ≥ 1

6b
2; for b = 1, gt(1) = ft(1) + t = 1 + t ≥ 1

6t. Next, assuming that the lower bound (6)
holds on gt(x) for all x ≤ b− 1 and gt−1(x) for all x ≤ b, we will prove the lower bound on gt(b).
From the recurrence (5) and the induction hypothesis, we have

gt(b) ≥ min
0≤x<b

1

6
tx1+1/t +

1

6
(t− 1)(b− x)1+1/(t−1) + b.

So, it suffices to prove

1

6
tx1+1/t +

1

6
(t− 1)(b − x)1+1/(t−1) + b ≥ 1

6
tb1+1/t (7)

for all 0 ≤ x < b. Setting x = λb where 0 ≤ λ < 1, (7) becomes

1

6
t(λb)1+1/t +

1

6
(t− 1)((1 − λ)b)1+1/(t−1) + b ≥ 1

6
tb1+1/t. (8)

Dividing by 1
6 tb

1+1/t on both sides, (8) is equivalent to

λ1+ 1
t +

t− 1

t
(1 − λ)1+

1
t−1 b

1
t(t−1) +

6

tb1/t
≥ 1. (9)

Since λ1+ 1
t ≥ λ1+ 1

t−1 , to prove (9), it suffices to prove

λ1+ 1
t−1 +

t− 1

t
b

1
t(t−1) (1 − λ)1+

1
t−1 ≥ 1 − 6

tb1/t
. (10)

It is easy to see that the derivative of the LHS of (10) is monotonically increasing, so it achieves its only

minimum at the point where its derivative is zero, namely when (this is where replacing the +x with +b in
(5) greatly simplifies things)

(

1 +
1

t− 1

)

λ
1

t−1 =
t− 1

t
b

1
t(t−1)

(

1 +
1

t− 1

)

(1 − λ)
1

t−1 ,
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or λ =

(

t− 1

t

)t−1

b1/t(1 − λ),

λ =
( t−1
t )t−1b1/t

( t−1
t )t−1b1/t + 1

.

Plugging this λ into the LHS of (10) while letting γ = ( t−1
t )t−1b1/t to simplify notation, we get

γ1+ 1
t−1 + γ

1
t−1

(γ + 1)1+
1

t−1

=
γ

1
t−1 (γ + 1)

(γ + 1)1+
1

t−1

=

(

γ

γ + 1

)
1

t−1

.

Since b1/t = ( t
t−1 )t−1γ < eγ, the RHS of (10) is at most 1 − 6

eγt ≤ 1 − 3
eγ(t−1) (since t ≥ 2). Thus, to

have (10), we just need to have

(

γ

γ + 1

)
1

t−1

≥ 1 − 3

e(t− 1)γ
,

or
γ

γ + 1
≥

(

1 − 3

e(t− 1)γ

)t−1

=

(

1 − 3

e(t− 1)γ

)

e(t−1)γ/3
eγ/3

⇐ γ

γ + 1
≥ e

− 3
eγ

⇔ 1 +
1

γ
≤ e

3
eγ

⇐ 1 +
1

γ
≤ 1 +

3

eγ
,

which is clearly true.

The induction, phase two. When t ≤ 1
2 log b, 1

6tb
1+1/t ≥ 1

6e
2tb ≈ 1.23tb, so the result of the first phase

already gives us ft(b) = gt(b)− tb = Ω(tb1+1/t), as desired. In this phase, we prove that, for some constant
c sufficiently large (which will depend on α),

ft(b) ≥
b log2 b

ct
(11)

for all 1
2 log b < t < α log b, which implies that ft(b) = Ω(b log b) = Ω(tb1+1/t) for these t’s. Note that we

only need to prove this for any constant α that is sufficiently large.
The base case of (11) includes all t, b such that t ≤ 1

2 log b. From the phase one result, for t ≤ 1
2 log b we

have ft(b) = Ω(tb1+1/t), which is at least b log2 b
ct for some constant c large enough. Indeed, if t = log b/ψ(b)

for any non-decreasing function ψ(b) of b, tb1+1/t = eψ(b)/ψ(b) · b log b, while b log2 b/t = ψ(b)b log b,
and it is clear that eψ(b)/ψ(b) = Ω(ψ(b)).
Now assuming that (11) holds on ft(x) for all x ≤ b − 1 and ft−1(x) for all x ≤ b, we will prove the

lower bound on ft(b). From the recurrence (4) and the induction hypothesis, we have

ft(b) ≥ min
0≤x<b

x log2 x

ct
+

(b− x) log2(b− x)

c(t− 1)
+ x.

Setting x = λb where 0 ≤ λ < 1, we just need to prove that

λb log2(λb)

ct
+

(1 − λ)b log2((1 − λ)b)

c(t− 1)
+ λb ≥ b log2 b

ct
(12)
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for all 0 ≤ λ < 1. Dividing by b
ct on both sides of (12), it becomes

λ log2(λb) +

(

1 +
1

t− 1

)

(1 − λ) log2((1 − λ)b) + λct ≥ log2 b. (13)

Rewriting (13), we have

λ

(

−2 log b log
1

λ
+ log2 1

λ

)

+ (1 − λ)

(

−2 log b log
1

1 − λ
+ log2 1

1 − λ

)

+
1

t− 1
(1 − λ)

(

log2 b− 2 log b log
1

1 − λ
+ log2 1

1 − λ

)

+ λct ≥ 0

⇐ −2λ log b log
1

λ
− 2(1 − λ) log b log

1

1 − λ
+

1 − λ

t− 1

(

log2 b− 2 log b log
1

1 − λ

)

+ λct ≥ 0. (14)

Since 1
2 log b < t < α log b, to prove (14), it suffices to prove

−2λ log b log
1

λ
− 2(1 − λ) log b log

1

1 − λ
+

1 − λ

α log b
log2 b− 1 − λ

1
2 log b

2 log b log
1

1 − λ
+
c

2
λ log b ≥ 0,

which is
1 − λ

2α
+
c

4
λ ≥ λ log

1

λ
+ (1 − λ) log

1

1 − λ
+

2(1 − λ) log 1
1−λ

log b
. (15)

Note that λ log 1
λ + (1 − λ) log 1

1−λ ≤ log 2 ≈ 0.69 (it maximizes at λ = 1
2 ). Below we show that if we

choose c = 12α2, then (15) is true for all λ, provided that α is a sufficiently large constant.

If λ ≥ 1/α2, then the LHS of (15) is at least c4λ ≥ 3, while the RHS of (15) is ≤ 0.69 +
2 log 1

1−λ

log b ≤
0.69 + 2 log b

log b = 2.69. If λ ≤ 1/α2, then the LHS of (15) is at least 1
2α (minimized at λ = 0 for α > 1/63).

For the RHS of (15), λ log 1
λ +(1−λ) log 1

1−λ is increasing in the region 0 ≤ λ ≤ 1/α2 (for α ≥ 1/
√

2), so

is at most 1
α2 log α2+

(

1 − 1
α2

)

log
(

1 + 1
α2−1

)

≤ 2
α2 log α+ 1

α2−1
, which is smaller than 1

4α for sufficiently

large α. The term
2(1−λ) log 1

1−λ

log b is at most 2 log 1
1−λ ≤ 2 log

(

1 + 1
α2−1

)

≤ 2
α2−1
, which is also smaller

than 1
4α . This completes the entire proof.

4 Final Remarks and Open Problems

We have introduced dynamic indexability and derived lower bounds for dynamic range query indexes in this

model. The lower bounds are tight for all practical values of the model parameters, but still there are some

intriguing theoretical questions left to be addressed.

We will assume N > M2 to simplify the following discussions. Let us focus on the most interest-

ing tradeoff point u = O( 1
B logN), q = O(logN). We have proved a matching lower bound for the

parameter range N = BO(1). The obvious question is: are the bounds tight for all values of N , ideally
not bounded in terms of B? The answer is, unfortunately, no. For example, the exponential tree [3] has
q = O(

√

logN/ log logN + K/B) and u = O(
√

logN/ log logN). When B = o(
√

logN log logN),
this beats the B-tree tradeoff. So the right question to pose should be the following: for what values of B is
the B-tree tradeoff optimal? In this paper we get to B = Ω(N ǫ) for any constant ǫ > 0; the exponential tree

15



implies that this is not true for B = o(
√

logN log logN). Can we narrow this gap? For those small B’s
where B-trees are not optimal, what is the right query-update tradeoff?

Central to the indexability model is the indivisibility assumption, i.e., each data record is manipulated as

an atomic element. The same assumption has been made in other external memory lower bounds like sorting

and permuting [1]. A major open problem in external memory algorithms is whether this assumption is

necessary. There are techniques that do not respect the atomicity of data records (most notably, those based

on hashing), but they are not better than the indivisibility-based techniques whenB is sufficiently large. The
only exception is a very recent surprising result by Iacono and Pǎtraşcu [16], where they give a hashing-

based solution for the dictionary problem that is better than the dynamic B-trees for (essentially) all values

of B. Their data structure, however, does not work for range reporting. It remains an intriguing question
whether one can break the indivisibility barrier for range reporting or prove a lower bound without assuming

indivisibility (say, in the cell-probe model).

Acknowledgment. The author would like to thank an anonymous reviewer for suggesting ways to simplify

the proof of Theorem 2.
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