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ABSTRACT
We will demonstrate SparkSQL+, a SQL processing engine built
on top of Spark. Unlike the vanilla SparkSQL that uses classical
query plans, SparkSQL+ adopts some of the recently developed
new query plans, including generalized hypertree decompositions
(GHD), worst-case optimal join (WCOJ) algorithms, and conjunc-
tive queries with comparisons (CQC). SparkSQL+ also provides a
platform for users to explore different query plans for a given query
through a web-based interface, and compare their performance
with classical query plans on the same Spark core.

CCS CONCEPTS
• Information systems→ Query optimization.
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1 INTRODUCTION
Select-Project-Join (SPJ) queries form the backbone of most analyt-
ical queries. Evaluation of SPJ queries, especially across multiple
relations, is often the bottleneck of modern OLAP systems. The
standard technique for evaluating an SPJ query, as implemented
in SparkSQL and most traditional query engines, aims at finding
an optimal (or near-optimal) query plan, which is a tree where
each leaf node corresponds to an input relation and each internal
node corresponds to a relational operator: selection (𝜎), projection
(𝜋 ), or (natural) join (Z). However, recent developments in data-
base theory and query evaluation algorithms have shown that, for
many queries, no such classical query plans can achieve the optimal
running time. We give some examples below to illustrate, while
referring the reader to the literature for more details. Let 𝑁 be the
total size of all input relations and𝑂𝑈𝑇 the size of the query results.
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Example 1.1. For the triangle query

𝑄1 := 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥1),

any classical query plan, which joins two of the relations first and
then joins the third relation, has a cost of 𝑂 (𝑁 2) in the worst case.
On the other hand, a worst-case optimal join (WCOJ) algorithm [3]
can achieve 𝑂 (𝑁 1.5) time. In general, WCOJ algorithms achieve a
running time of𝑂 (𝑁 𝜌 ) where 𝜌 is the fractional edge cover number
of the query.

Example 1.2. For the dumbbell query

𝑄2 := 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥1)
Z 𝑅4 (𝑥4, 𝑥5) Z 𝑅5 (𝑥5, 𝑥6) Z 𝑅6 (𝑥6, 𝑥4) Z 𝑅7 (𝑥1, 𝑥4),

even an optimal classical query plan has a cost of 𝑂 (𝑁 2 +𝑂𝑈𝑇 ) in
the worst case. On the other hand, by combining the generalized
hypertree decomposition (GHD) [2] andWCOJ algorithms, it is pos-
sible to achieve a running time of 𝑂 (𝑁 1.5 +𝑂𝑈𝑇 ). More generally,
a running time of 𝑂 (𝑁𝑤 +𝑂𝑈𝑇 ) can be achieved where𝑤 is the
fractional hypertree width of the GHD.

Example 1.3. Consider the SJ query:

𝑄3 := 𝜎𝑥1<𝑥4 (𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥4)) .

Note that the selection predicate 𝑥1 < 𝑥4 crosses relations, so it
cannot be pushed down1. As such, a classical query plan must
evaluate the 3-way join first (using some join order), and then filter
the join results through the predicate. This results in a running
time of 𝑂 (𝑁 2) in the worst case. On the other hand, using the
recent Conjunctive Queries with Comparisons (CQC) algorithm [4],
this query can be evaluated in 𝑂 (𝑁 +𝑂𝑈𝑇 ) time. Note that here
𝑂𝑈𝑇 still denotes the query result size after passing the predicate,
which can be much smaller than the intermediate 3-way join size.
More generally, it has been shown that if the query is 𝛼-acyclic and
the comparisons are Berge-acyclic, then 𝑂 (𝑁 +𝑂𝑈𝑇 ) time can be
achieved.

Before these exciting algorithmic developments can really
change the classical, 50-year-old query planning paradigm, the
following questions must be answered:

(1) Are these algorithmic techniques isolated? Can they all be
implemented under a common platform to handle a large
class of queries?

1If a predicate only involves variables from one relation, it can be pushed down to
that relation and then eliminated trivially in linear time (or even sublinear time if
indexes are available). Thus, a “predicate” in this paper always refers to one that crosses
multiple relations. Furthermore, since an equality predicate can always be rewritten
into a natural join by proper renaming attributes, it is without loss of generality to
assume that the predicate takes the form of a comparison (i.e., <, ≤,>, or ≥) between
two functions of the variables.
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(2) Similar to classical query planning, these next-generation
query processing algorithms also instantiate into multiple
plans. For example, there might be different GHDs with the
same width, and different join trees and reduction orders for
the CQC algorithm. How should we pick the optimal one?
Note that the theory says that all plans are equally good up
to constant factors, but these constant factors matter a lot in
practice.

(3) While these new algorithms have a better worst-case running
time, are they really better than the classical query plans in
the typical case, say, on real or benchmark data?

We will demonstrate SparkSQL+, a SQL engine built on top
of Spark, which addresses question (1) above, while providing a
platform for people to better understand questions (2) and (3). Pre-
viously, EmptyHeaded [1] has combined GHD and WCOJ, but not
CQC. In terms of addressing questions (2) and (3), SparkSQL+ also
provides a fairer platform for comparing the classical query plans
with the new ones, since after the query plan has been generated,
it is still executed by the same Spark core underlying SparkSQL,
which generates a classical query plan. Other benefits of building
on top of Spark include fault tolerance, distributed processing, elas-
ticity, and compatibility with a variety of data sources and sinks.
Finally, SparkSQL+ is easy to be integrated into the thriving Spark
ecosystem, e.g., one may train a machine learning model using
SparkML over the results of a SparkSQL+ query. On the other hand,
EmptyHeaded is a centralized (with multi-threading) system with
its own custom implementation.

2 SPARKSQL+ EXAMPLE QUERY PLANS
The query plans used in SparkSQL+ for Example 1.1 and 1.2 are
the same as those in EmptyHeaded [1]. Below, we demonstrate one
candidate CQC plan [4] for the query 𝑄3 in Example 1.3.

We first need to fix a join tree for the query. Suppose we use the
one in Figure 1(a). The CQC algorithm makes two passes over the
join tree: The first bottom-up pass reduces the join tree, one leaf
at a time, until one relation remains, on which the predicate can
be evaluated trivially in linear time. Then we perform a top-down
pass to unroll these reductions.
Step 1. Both 𝑅1 and 𝑅3 are reducible [4]. Suppose we reduce 𝑅1
first. This reduction involves two operations: (1) Group 𝑅1 by 𝑥2,
and sort the tuples by 𝑥1 in ascending order within each group. (2)
Convert 𝑅2 to 𝑅′2 by evaluating the following query:

SELECT 𝑅2 .𝑥2, 𝑅2 .𝑥3, MIN(𝑅1 .𝑥1) as 𝑥5
FROM 𝑅1 NATURAL RIGHT OUTER JOIN 𝑅2
GROUP BY 𝑅2 .𝑥2, 𝑅2 .𝑥3

The contents of 𝑅1 and 𝑅′2 after this step are shown in Figure 1(b),
where ⊥ denotes an empty group. Note that we have

𝜋𝑥2,𝑥3,𝑥4𝑄3 = 𝜎𝑥5<𝑥4 (𝑅′2 Z 𝑅3),
namely, the query has been transformed into 𝜎𝑥5<𝑥4 (𝑅′2 Z 𝑅3).
Step2. Next, we reduce 𝑅3. Similar to Step 1, we (1) group 𝑅3 by 𝑥3
and sort 𝑥4 in descending order within each group, and (2) convert
𝑅′2 to 𝑅

′′
2 with the query

SELECT 𝑅′
2 .𝑥2, 𝑅′

2 .𝑥3, 𝑅′
2 .𝑥5, MAX(𝑅3 .𝑥4) as 𝑥6

FROM 𝑅3 NATURAL RIGHT OUTER JOIN 𝑅′
2

GROUP BY 𝑅′
2 .𝑥2, 𝑅′

2 .𝑥3, 𝑅′
2 .𝑥5

Figure 1(c) shows the result after this reduction. Observe that

𝜋𝑥2,𝑥3𝑄3 = 𝜎𝑥5<𝑥6𝑅
′′
2 .

Now, the query has been reduced to just one relation with a predi-
cate, which can be trivially evaluated. All tuples that do not pass
the predicate are marked in gray in Figure 1(c).
Step 3. After obtaining 𝜋𝑥2,𝑥3𝑄3, it remains to augment the results
with 𝑥1 and 𝑥4. To do so, we unroll the two reductions. We start
by enumerating all results in 𝑅′′2 Z 𝑅3 such that 𝑥5 < 𝑥4. For each
tuple 𝑡2 in 𝑅′′2 , we join it with all 𝑡3 in 𝑅3 such that 𝑡2 .𝑥3 = 𝑡3 .𝑥3
and scan the 𝑥4 value from large to small. The scan will stop at the
first 𝑥4 that is smaller than 𝑡2 .𝑥5, as the remaining results cannot
satisfy the comparison. The result is shown in Figure 1(d).
Step 4. Similar to Step 3, we further join the result from Step3
with 𝑅1 and get the final result as in Figure 1(e).

It has been shown that the first two steps take 𝑂 (𝑁 ) time while
the last two steps take𝑂 (𝑂𝑈𝑇 ) time [4]. These guarantees hold on
any join tree and any reduction order, but the hidden constant in
the big-O might differ.

SparkSQL+ has also implemented GHD and WCOJ. In combi-
nation with CQC, it can support more complicated queries. As
example, consider the query 𝑄2 in Example 1.2 with an additional
predicate:

𝑄4 := 𝜎𝑥1 ·𝑥2+𝑥3<𝑥4+2𝑥5−𝑥6𝑄2 .

Since 𝑄2 is not acyclic, SparkSQL+ first constructs a GHD with
three bags:

𝐵1 (𝑥1, 𝑥2, 𝑥3, 𝑦1 := 𝑥1 · 𝑥2 + 𝑥3) := 𝑅1 Z 𝑅2 Z 𝑅3;
𝐵2 (𝑥4, 𝑥5, 𝑥6, 𝑦2 := 𝑥4 + 2𝑥5 − 𝑥6) := 𝑅4 Z 𝑅5 Z 𝑅6;
𝐵3 (𝑥1, 𝑥4) := 𝑅7 (𝑥1, 𝑥4) .

Then it uses WCOJ to compute 𝐵1 and 𝐵2, after which the query
transforms to one that is equivalent to 𝑄3.

3 SYSTEM ARCHITECTURE
Figure 2 depicts the overall structure of SparkSQL+. On a high level,
it consists of two parts. The first part translates the query into Scala
code, going through various stages including a user interface, the
parser, the query planner, and the code generator. The second part
compiles the Scala code into a jar, which is then submitted to a
Spark cluster with a SparkSQL+ library plus Spark’s own necessary
dependencies for execution.
User interface. SparkSQL+ provides two user interfaces: a com-
mand line, and a web-based interface. The command line interface
is easy to interact with and allows the user to integrate SparkSQL+
with other systems. The web-based interface allows the user to
explore different query plans (described below) with visualization.
Parser. The parser converts the SQL query to a logical plan. It is
implemented based on Calcite. Using Calcite’s catalog management
and SQL validation, the parser validates the query. We extend the
Data Definition Language (DDL) support in Calcite to allow the
user to declare more information about the table (e.g., the path to
the data source file) in the DDL. After receiving a query from the
user interface, it is parsed by the parser and converted into a logical
plan as shown in Figure 3(a).
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𝑅2
x2 x3
1 1
2 3
3 2
4 2

𝑅1
x1 x2
5 1
3 1
4 2
8 3

𝑅3
x3 x4
1 4
3 3
2 9
1 6

(a)

𝑅
′
2

x2 x3 x5
1 1 3
2 3 4
3 2 8
4 2 ⊥

𝑅1
x1 x2
3 1
5 1
4 2
8 3

𝑅3
x3 x4
1 4
3 3
2 9
1 6

(b)

𝑅
′′
2

x2 x3 x5 x6
1 1 3 6
2 3 4 3
3 2 8 9
4 2 ⊥ 9

𝑅1
x1 x2
3 1
5 1
4 2
8 3

𝑅3
x3 x4
1 6
1 4
2 9
3 3

(c)

𝑅𝑒𝑠𝑢𝑙𝑡

x2 x3 x5 x4
1 1 3 6
1 1 3 4
3 2 8 9

𝑅1
x1 x2
3 1
5 1
4 2
8 3

(d)

𝑅𝑒𝑠𝑢𝑙𝑡

x2 x3 x4 x1
1 1 6 3
1 1 6 5
1 1 4 3
3 2 9 8

(e)

Figure 1: A running example
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Figure 2: SparkSQL+ system architecture
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(f)

Figure 3: Example workflow
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Figure 4: The physical query plan

Query planner. The query planner is the core component of
SparkSQL+. After receiving a logical plan from the parser, the plan-
ner converts it into a relational hypergraph and a set of comparison
predicates as shown in Figure 3(b).

Next, the planner checks if the query is acyclic. If not, it finds a
GHD. Then the planner runs the GYO algorithm [5] to find all can-
didate join trees and their supporting comparison hypergraphs (see
[4] for details). For the query in Example 1.3, there are 3 candidates
as shown in Figure 3(c). If the user is using the web-based interface,
the user can select one of them. Suppose that the join tree in the
middle is selected, whose corresponding comparison hypergraph
is shown in Figure 3(d).

After a join tree is selected, the planner generates a query plan
following [4]. The plan consists of compile actions that tell the code
generator what to generate. Figure 3(e) shows the 2 reductions for
the given example. When reducing 𝑅1, the planner creates a new
column 𝑥5 for 𝑅′2, issues a createExtraColumnAction, and then
updates the comparison to 𝑥5 < 𝑥4. Then the planner reduces 𝑅3.
Similarly, 𝑥6 is created, a createExtraColumnAction is issued,
and the comparison is updated to 𝑥5 < 𝑥6. Now 𝑅′′2 is the only re-
maining relation, the planner issues appendExtraColumnAction
andfilterAction. After that, the planner issues enumerateActions
for 𝑅3 and 𝑅1. The issued compile actions are shown in Figure 3(f).

Code Generator. The code generator translates the compile ac-
tions into a physical plan, which is a standard Spark lineage graph
consisting of RDD operators. For example, the physical plan of 𝑄3
is shown in Figure 4. The 2 mapValues after groupBy and sort
correspond to the creation of 𝑥5 and 𝑥6. The coGroup and flatMap
correspond to appending 𝑥5 and 𝑥6 to 𝑅2. The coGroups andmap-
Partitions in the bottom right corner correspond to enumerations
of 𝑅3 and 𝑅1. To eliminate redundancy, SparkSQL+ tries to reuse
the RDDs as much as possible when generating the physical plan.

SparkSQL+ library.. To assist the generation of the physical plan,
we have also implemented a SparkSQL+ library, which defines a set
of APIs such as sortValuesWith, appendExtraColumn, and enu-
merate. Instead of generating a physical plan, the planner actually
generates Scala code that calls these APIs. Then, the SparkSQL+
library translates these APIs into standard RDD operators.

4 DEMONSTRATION
During the demonstration, we will provide an interactive expe-
rience for audiences to get a better understanding of these next-
generation query plans, as well as experimenting with various
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Figure 5: Select candidate view of SparkSQL+

Figure 6: Experiment view of SparkSQL+

queries and data sets to see if and when these query plans out-
perform the classical query plans. Specifically, we will guide the
audience through the following steps:

Step1. Submit Query. The audience can select one of the pre-
defined queries or write his/her own queries. Then, the DDL and
query will be sent to the back-end parser for parsing.

Step2. Select Candidate. After parsing and finding candidate
plans, SparkSQL+ will show the plans for the user to select (see
Figure 5). The user interface will show both the join tree and the
corresponding comparison hypergraph.

Step3. Code generation. The generated Scala code will then be dis-
played. The user can examine the generated code and then submit
it to a back-end Spark cluster for execution.

Step4. Experimental comparison. In addition to running the new
plan, one can also use our demonstration system to conveniently
run the same query in vanilla SparkSQL, and display the running
times side by side (see Figure 6).
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