
Secure Yannakakis: Join-AggregateQueries over Private Data
Yilei Wang Ke Yi

Hong Kong University of Science and Technology
(ywanggq,yike)@cse.ust.hk

ABSTRACT
In this paper, we describe a secure version of the classical Yannakakis
algorithm for computing free-connex join-aggregate queries. This
protocol can be used in the secure two-party computation model,
where the parties would like to evaluate a query without revealing
their own data. Our protocol presents a dramatic improvement
over the state-of-the-art protocol based on Yao’s garbled circuit. In
theory, its cost (both running time and communication) is linear in
data size and polynomial in query size, whereas that of the garbled
circuit is polynomial in data size and exponential in query size. This
translates to a reduction in running time in practice from years
to minutes, as tested on a number of TPC-H queries of varying
complexity.
ACM Reference Format:
Yilei Wang, Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over
Private Data. In Proceedings of the 2021 International Conference on Manage-
ment of Data (SIGMOD ’21), June 18–27, 2021, Virtual Event , China. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3448016.3452808

1 INTRODUCTION
Privacy concerns have become the main hurdle for data-hungry
applications, most notably query processing, data analytics, and ma-
chine learning. The blueprint for such applications is a private data
federation [6, 16], in which multiple autonomous data systems work
together to provide query answering services through a common
interface. However, the key technical challenge in realizing this
blueprint is how to address the privacy concerns of the individual
data owners, as illustrated by the following example.

Example 1.1. Consider the following (oversimplified) scenario
where an insurance company wishes to estimate the amount of
payment it would pay out, classified by disease types, before the pa-
tients submit claims. The company’s data is stored in two relations
𝑅1 (person, coinsurance, state) and 𝑅3 (disease, class). On the
other hand, the medical records are stored in the hospital’s database
as a relation 𝑅2 (person, disease, cost). If all three relations were
available, one would write the following SQL query:
select class, sum(cost * (1 - coinsurance))
from R1, R2, R3
where R1.person=R2.person and R2.disease=R3.disease
group by class;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 18–27, 2021, Virtual Event , China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452808

The challenge in evaluating this query is that the three relations
are held by two parties respectively as their private data. Privacy-
preserving query processing protocols need to be designed so that
the insurance company can learn the query results, but nothing
else about the hospital’s data. Meanwhile, the hospital cannot learn
anything about the insurance company’s data. □

There are two aspects when it comes to privacy protection when
evaluating a query like above. First, privacy cannot be protected
completely, as the query results must reveal some information about
the data, which is actually the purpose of asking the query in the
first place. Thus, the literature defines privacy as any information
beyond what can be inferred from the query results, and it is re-
quired that no such information be derivable from the transcript
of the query evaluation protocol. Such a protocol is also said to
be oblivious to the input data. This notion can be more formally
defined using the real-ideal world paradigm (see Section 4), and the
area is known as secure multi-party computation (SMC) [14].

What if we also want to guard against the query results from re-
leasing private information?As complete privacy cannot be achieved
(unless we do not evaluate any query at all), there must be a privacy-
utility trade-off. The idea is to add some noise to the query results
so that the amount of private information that can be extracted
from the perturbed query results is limited: the more noise that
is added, the less private information that can be extracted. There
have also been extensive studies on this aspect, with the dominating
approach in recent years being differential privacy [13].

These two aspects aim at preventing different data flows from
breaching privacy: SMC guards against the transcript of the proto-
col, i.e., the process of query evaluation, while differential privacy
guards against the end results. They are thus complementary, and
one could employ both to achieve full-range privacy protection, as
long as we carry out the noise-addition mechanism in differential
privacy also in SMC.

This paper studies the first aspect. In particular, we consider the
two-party setting (also known as the 2PC model). Per tradition, we
name the two parties as Alice and Bob. We assume that the global
schema of the database is publicly known, but each relation is held
by either Alice or Bob as her/his private data. We aim at designing
secure protocols for evaluating join-aggregate queries (see Section
3 for a more formal definition). Joins are important for obvious
reasons; aggregations are also common for queries evaluated in the
SMC model, as SMC only protects privacy beyond the query results.
If the query results were too numerous, they unavoidably would
reveal a lot of private information. Furthermore, if one also wants to
use differential privacy to guard against the query results, the results
can only be aggregates since all noise-addition mechanisms work
only for aggregates. In fact, if the query results include any tuple
from the original database (or any deterministic transformation of
the tuple), this query cannot possibly be made differentially private.

https://doi.org/10.1145/3448016.3452808
https://doi.org/10.1145/3448016.3452808

1.1 Previous Work
The SMC model was first proposed by Yao [35]. Over the years, it
has gradually developed from a theoretical curiosity to a practical
tool for privacy-preserving applications. In the 2PCmodel, the most
popular approach is Yao’s garbled circuit [35], which is a generic
protocol that can be used to evaluate any function by expressing
it as a Boolean circuit. Its cost (both computation and communi-
cation) is proportional to the size of the circuit, and the constant
coefficient has been reduced significantly over the years, thanks to
improvement in both hardware and algorithm design [14].

Bater et al. [6] have developed SMCQL, the first secure query
processing engine that supports joins in the 2PC model, following
the ObliVM [23] framework. It processes a given SQL query in
a bottom-up fashion following an optimized query plan, evaluat-
ing each relational operator using a garbled circuit generated by
ObliVM. However, since the SMC model forbids the transcript of
the protocol to reveal any information about the private data be-
yond what can be learned from the query results, the intermediate
result size of each relational operator must be hid from the parties.
Thus, each intermediate relation has to be padded with dummy
tuples to reach its maximum possible size, so that it doesn’t depend
on the actual input data. For a join over 𝑘 relations each of size
𝑁 , the maximum possible intermediate result size is O(𝑁𝑘), even
though the final query result may just consist of a few aggregates.
Therefore, the garbled circuit has size Õ(𝑁𝑘)1. Evaluating such a
huge garbled circuit is very expensive. In practice, it takes a day to
evaluate a query on two relations with only hundreds of tuples, as
shown in their experiments.

Concurrent with our work, Poddar et al. [29] observe that for
(natural) joins where the join attribute is unique in both tables, the
problem can be solved using private set intersection (PSI) [10, 17,
26–28]. They have built a system to handle general SQL queries
involving joins on unique attributes in the malicious multi-party
model (see Section 4 for the security definition), in a way much
more efficient than using a naive huge garbled circuit. When the
join attribute contains duplicates, their protocol needs a public
upper bound on the multiplicity. The performance of their protocol
deteriorates as this upper bound grows. In the worst case when the
upper bound is the size of the table (i.e., all tuples may have the
same value on the join attribute), their protocol degenerates into
the naive garbled circuit.

To mitigate the problem of huge intermediate join results, Bater
et al. [7] proposed a method that, instead of the maximum possible
intermediate result size, uses the actual size, which is often much
smaller on most real-world data. However, as the actual intermedi-
ate result size could reveal private information, they pad a random
number of dummy tuples, where the number of dummy tuples is
determined by differential privacy. This has drastically reduced
the cost, but it deviates from the SMC model, which requires that
no information be leaked other than the end query results. Note
that the intermediate result size (even perturbed with noise) con-
tains information not in the end query results. Consider the query
in Example 1.1, and suppose the query plan joins 𝑅1 and 𝑅2 first.

1The Õ notation hides polynomial dependencies on log𝑁 , the query size (i.e., number
of relations and attributes), the security parameters𝜅, 𝜎 , and the bit-length of attributes
ℓ . Please see Section 3 and 4 for formal definitions of these parameters.

The intermediate join size |𝑅1 Z 𝑅2 |, even with noise, can give
the insurance company an estimate on the average number of dis-
eases a person have treated at the hospital, something the hospital
may not be willing to reveal. Therefore, this approach violates the
requirement of SMC, although it still respects differential privacy.

1.2 Our Results
We present secure Yannakakis, a 2PC protocol for evaluating any
free-connex join-aggregate query (formal definition given in Section
3) with Õ(IN + OUT) cost (both computation and communication),
where IN is the total number of tuples in the input relations and
OUT is the output size. Note that OUT refers to the size of the
final query output after aggregation, not the join size. Thus OUT is
usually much smaller than IN. However, it is theoretically possible
to have OUT > IN (e.g., when the query has many attributes in the
group by clause), although this may not be common in applications
with privacy concerns. But in either case, an Õ(IN + OUT) cost is
clearly optimal, even in the non-private setting.

The secure Yannakakis protocol works in the strict 2PC model.
It reveals nothing other than what can be inferred from the query
results. It does not require any assumptions on the input data, such
as an upper bound on the multiplicity in the join attribute as in [29].
It represents a significant improvement over the generic, circuit-
based approach taken by SMCQL. In theory, its data complexity
(i.e., dependency on IN) has been reduced from a large polynomial
Õ(𝑁𝑘) = Õ((IN/𝑘)𝑘) to linear, and the dependency on query size
reduced from exponential to polynomial. Besides, the number of
communication rounds of secure Yannakakis only depends on the
query size, not the data size. This translates to a dramatic improve-
ment over SMCQL in practice as demonstrated by our experimental
results in Section 8.

Our starting point is the observation that if a protocol is to be
oblivious to the input data, its cost in particular must not depend on
the input, which effectively means that every input should incur the
same cost as that on the worst-case input. This renders all the cost-
based query optimization techniques useless. Instead, we should
look for worst-case efficient algorithms, whose costs are bounded
no matter what the input is. The Yannakakis algorithm [34], a
classical algorithm for evaluating acyclic queries with worst-case
running time O(IN + OUT), is exactly such an algorithm.

However, porting the Yannakakis algorithm to the SMC model is
nontrivial. The first technical difficulty is that it is not a circuit-based
algorithm; it heavily relies on hash joins to achieve the optimal
O(IN + OUT) running time. To overcome this difficulty, we design
non-circuit-based protocols for joins and semijoins, whose cost is
linear to the input size plus output size. Another hurdle, which
is more subtle, is that we have to put the protocols for different
relational operators together, in a way such that the intermediate
results do not reveal any private information. This is challenging
in our setting, since while our join and semijoin protocols are
non-circuit-based, our aggregation protocol still is. To solve this
problem, we make use of a very recent PSI protocol [27] that is
“circuit-friendly” in designing our semijoin protocols. Finally, we use
secret sharing and oblivious extended permutation (OEP) as “glue”
to assemble the pieces together, yielding the secure Yannakakis

protocol. Note that the assembly process is much easier in SMCQL,
where all operators use garbled circuits.

The rest of the paper is organized as follows. After surveying
other related work, we precisely define the class of queries that
can be handled by our protocol in Section 3, which also includes a
brief review of the classical Yannakakis algorithm. In fact, we have
to make some modifications to the original algorithm in order to
port it to the SMC model. Section 4 formally defines the security
model and the secure query evaluation problem. Section 5 reviews
some cryptographic primitives, as well as their adaptions to fit our
purpose. The secure Yannakakis algorithm is presented in Section
6, with some of its extensions discussed in Section 7. We present
our experimental study in Section 8 before introducing some future
work.

2 RELATEDWORK
Efficient and secure protocols for many key operations on secret-
shared databases are introduced in [22], but they did not study
joins, the most important operation. Laur et al. [21] implemented
an oblivious AES protocol based on Sharemind, and used it to
securely compute 2-way joins. However, their join protocol cannot
be combined with other operators (including other joins), as it
reveals the intermediate join size. Besides, the complexity of their
protocol also linearly depends on the public upper bound on the
multiplicity, similar to [29].

Another approach to reducing the high cost of garbled circuits
is to assume a trusted third party [1, 32, 33]. Note that if this third
party could be trusted with all data, the problem would not exist
as this party can simply evaluate the query and send the results
back. So the model allows the trusted party to access a subset
of the columns. When the trusted party have access to certain
columns, especially the join attributes, this approach significantly
improves query efficiency. However, there is no improvement when
all columns must be kept secret. Hardware vendors now offer chips,
such as Intel SGX, that can be considered as such a trusted party.
They are being increasingly adopted [2, 5, 31] due to great reduc-
tions in execution costs. Our protocol is entirely software-based
and assumes no trusted entities at all, but it’s possible to shift some
of the computation to a trusted party, if one exists, to further reduce
the cost.

Finally, another popular model studied in the literature is out-
sourced databases, where the data owner uploads encrypted data to a
cloud, who provides SQL services to the data owner. Representative
systems include CryptDB [30] and Cipherbase [2]; representative
researches include [3, 20]. This is distinct from the SMC model,
where multiple data owners would like to query on their joint data
without sharing them.

3 JOIN-AGGREGATE QUERIES OVER
ANNOTATED RELATIONS

3.1 Query Definition
Hypergraphs and Joins. A (natural) join can be modeled as a

hypergraphH = (V, E), where the verticesV corresponds to the
attributes and each hyperedge 𝐹 ∈ E corresponds to a relation.
Let D𝐴 be the domain of attribute 𝐴 ∈ V , from which its values

𝑅1 (𝐴, 𝐵)

𝑅2 (𝐴,𝐶) 𝑅3 (𝐵, 𝐷)

𝑅4 (𝐷, 𝐹,𝐺) 𝑅5 (𝐵, 𝐸)

(a)

𝑅5 (𝐵, 𝐸)

𝑅3 (𝐵, 𝐷)

𝑅1 (𝐴, 𝐵)

𝑅2 (𝐴,𝐶)

𝑅4 (𝐷, 𝐹,𝐺)

(b)

Figure 1: An acyclic join with different join trees, with the
output attributes underlined. The one in (b) testifies that it’s
free-connex.

are drawn. For each hyperedge 𝐹 ∈ E, there is a relation 𝑅𝐹 that
consists of a set of tuples, where each tuple assigns a value from
D𝐴 to 𝐴 for each attribute 𝐴 ∈ 𝐹 . We also use the notation such as
𝑅(𝐴, 𝐵,𝐶) to indicate that the attributes of 𝑅 are 𝐴, 𝐵,𝐶 .

The join results J =Z𝐹 ∈E 𝑅𝐹 are all tuples that are consistent
with some tuple in 𝑅𝐹 for every 𝐹 ∈ E, i.e.,

J = {𝑡 ∈ DV | ∀𝐹 ∈ E : 𝜋𝐹 (𝑡) ∈ 𝑅𝐹 }.

Join Tree. A join tree of a hypergraphH is a tree T where the
hyperedges ofH are the nodes of T , such that for each attribute
𝐴 ∈ V , all nodes containing 𝐴 are connected in T . The join is said
to be acyclic if its hypergraph has a join tree. For example, the query
in Example 1.1 is acyclic, with a join tree 𝑅1 − 𝑅2 − 𝑅3. Figure 1
shows a more complicated example. On the other hand, the triangle
join 𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐴,𝐶) is not acyclic.

Since there is a one-to-one correspondence, we will not distin-
guish between a node in T and the relation it corresponds to.

Annotated Relations. We follow the terminology from [18]. Let
(𝑆, ⊕, ⊗) be a finite commutative semiring, where 𝑆 is the ground set
and ⊕ and ⊗ are its “addition” and “multiplication” operators. In our
paper, we simply take the ground set 𝑆 to be Z𝑛 = {0, 1, . . . , 𝑛 − 1},
𝑛 = 2ℓ , where ℓ is the least number of bits to represent all annota-
tions. This is without loss of generality as they are merely identifiers
of the semiring elements. The only requirements we impose are
(1) 0 is the ⊕-identity of the semiring; (2) 1 is the ⊗-identity of the
semiring; and (3) ⊕ and ⊗ can be evaluated by �̃� (1)-size Boolean
circuits. For example, the semiring ({True, False},∨,∧) can be triv-
ially handled by constant-size circuits by mapping True to 1 and
False to 0; for the semiring (actually, ring) (Z𝑛, +,×), where opera-
tions are done modulo 𝑛, the circuit for + has size O(log𝑛) while
O(log2 𝑛) for ×.

Given a semiring, we associate each tuple 𝑡 with an annotation
𝑣 (𝑡) ∈ 𝑆 , and extend the join and projection-aggregation operations
to annotated relations as follows. The annotated join Z⊗

𝐹 ∈E 𝑅𝐹 , in
addition to computing the join results J , also computes the ⊗-
aggregate of the annotations of the tuples compromising each join
result 𝑡 as its annotation, i.e.,

𝑣 (𝑡) =
⊗
𝐹 ∈E

𝑣 (𝜋𝐹 (𝑡)) .

An annotated projection-aggregation 𝜋 ⊕
𝐹
(𝑅) first performs a nor-

mal projection, i.e., finds all the distinct (combinations of) values on
𝐹 in 𝑅. Then for each distinct value, it computes the ⊕-aggregate of

annotations of all tuples in𝑅 with that distinct value. More precisely,
for any 𝑡 ∈ 𝜋𝐹 (𝑅), its annotation in 𝜋 ⊕

𝐹
(𝑅) is

𝑣 (𝑡) =
⊕

𝑟 ∈𝑅:𝜋𝐹 (𝑟)=𝑡
𝑣 (𝑟).

Note that 𝜋 ⊕
𝐹
(𝑅) exactly corresponds to

select ⊕ (annotation) group by 𝐹

in SQL. In particular, when 𝐹 = ∅, 𝜋 ⊕
𝐹
(𝑅) returns a single empty

tuple, whose annotation is the ⊕-aggregate of all annotations of
tuples in 𝑅.

Define 𝜋1
𝐹
(𝑅) := 𝜋𝐹 ({𝑡 ∈ 𝑅 | 𝑣 (𝑡) ≠ 0}), while the annotations

of all tuples in 𝜋1
𝐹
(𝑅) are set to 1. Then we define an annotated

semijoin as
𝑅𝐹 ⋉⊗ 𝑅𝐹 ′ := 𝑅𝐹 Z

⊗ 𝜋1𝐹∩𝐹 ′ (𝑅𝐹 ′),
namely, it returns the subset of tuples in𝑅𝐹 , whichwould produce at
least one nonzero-annotated join result if joined with 𝑅𝐹 ′ . However,
the semijoin itself does not actually do the join; instead, it simply
finds this subset while preserving their annotations in 𝑅𝐹 .

Join-Aggregate Queries. Given a hypergraphH = (V, E), a set
of output attributes𝑂 ⊆ V , and a set of annotated relations 𝑅𝐹 , 𝐹 ∈
E, a join-aggregate query is Q = 𝜋 ⊕

𝑂
(Z⊗

𝐹 ∈E 𝑅𝐹). We use IN =∑
𝐹 ∈E |𝑅𝐹 | to denote the total size of all input relations, and OUT

the output size; note that both IN and OUT can be much smaller
than the join size |J |.

By appropriately defining the semiring and the annotations, one
can express many SQL queries as join-aggregate queries.

Example 3.1. To answer the query in Example 1.1, we can use the
semiring (Z𝑛, +,×), where 𝑛 is chosen large enough so that there
will be no overflows. The annotation of each tuple in 𝑅1 is set to
100*(1-coinsurance), assuming coinsurance is a floating-point
number with 2 digits of precision. Tuples in 𝑅2 have annotations
equal to cost, and the annotations of all tuples in 𝑅3 are set to 1.
The output attribute is 𝑂 = {class}. Then the query becomes a
join-aggregate query, except that we need to scale the query results
down by 100. □

We consider free-connex join-aggregate queries [4], namely (1)
the hypergraph H is acyclic; and (2) H has a join tree T with a
designated root node, such that for any 𝐴 ∈ 𝑂 and 𝐵 ∈ V − 𝑂 ,
TOP(𝐵) is not an ancestor of TOP(𝐴) in T , where TOP(𝑋) de-
notes the highest node in T containing attribute 𝑋 . For exam-
ple, the query in Example 1.1 is free-connex, using the join tree
𝑅3 − 𝑅2 − 𝑅1 with 𝑅3 as the root. On the other hand, if we do
group-by on {class, coinsurance}, then the query will not be
free-connex. Note that if 𝑂 = ∅, condition (2) is automatically sat-
isfied. As another example, consider the query in Figure 1a when
𝑂 = {𝐵, 𝐷, 𝐸, 𝐹 }. This join tree does not satisfy condition (2), but
the one in Figure 1b does. So the query is still free-connex. They
way to determine whether a query is free-connex, and find the join
tree if so, has been discussed in [18], which we will not address in
this paper.

In fact, free-connex queries are exactly the class of join-aggregate
queries that are known to be solvable in Õ(IN + OUT) time [18],
even in the centralized, non-private setting. The problem is wide
open for non-free-connex queries. If the query is non-free-connex or

cyclic, the cost will be a polynomial, with the exponent depending
on the “width” of the query, which is beyond the scope of this paper.

3.2 Yannakakis Algorithm
The Yannakakis algorithm [34] is a classical algorithm that evaluates
an acyclic join query in O(IN +OUT) time. It has been extended to
handle free-connex join-aggregate queries by Joglekar et al. [18].
In order to use it for secure query evaluation, we modify it into the
following 3-phase algorithm. Given an free-connex join-aggregate
query Q, let T be its join tree satisfying condition (2) stated above.

(1) Reduce. We first reduce the query by removing all its non-
output attributes. This is done in a bottom-up pass on T
while performing joins and aggregations. For each node 𝑅𝐹
with parent 𝐹𝑝 , let 𝐹 ′ = (𝑂 ∪ 𝐹𝑝) ∩ 𝐹 . If 𝐹 ′ ⊆ 𝐹𝑝 , we update
𝑅𝐹𝑝 as 𝑅𝐹𝑝 ← 𝑅𝐹𝑝 Z

⊗ 𝜋 ⊕
𝐹 ′ (𝑅𝐹) and then remove the node

𝑅𝐹 from T . If 𝐹 ′ − 𝐹𝑝 ≠ ∅, the reduce process stops going
upward. Instead, we only update 𝑅𝐹 as 𝑅𝐹 ← 𝜋 ⊕

𝐹 ′ (𝑅𝐹). Note
that the attributes of 𝑅𝐹 are also updated to 𝐹 ← 𝐹 ′. In
this case, all attributes in 𝐹 ′ must be output attributes, so
are all the ancestors of 𝑅𝐹 due to the free-connex property.
Therefore, after the reduce phase, only output attributes
remain.

(2) Semijoin. We use two passes of semijoins to remove the
dangling tuples, i.e., tuples that do not appear in the join
results. In the first pass, we visit the nodes in the reduced
join tree T in some bottom-up order. For any non-root node
𝑅𝐹 with parent 𝑅𝐹𝑝 , we update 𝑅𝐹𝑝 as 𝑅𝐹𝑝 ← 𝑅𝐹𝑝 ⋉⊗ 𝑅𝐹 .
Note that the semijoin just returns a subset of the tuples in
𝑅𝐹𝑝 , but does not change their annotations. Then we perform
a top-down pass in a similar fashion, updating each node 𝑅𝐹
as 𝑅𝐹 ← 𝑅𝐹 ⋉⊗ 𝑅𝐹𝑝 .

(3) Full join. Finally, we compute the join and their annotations
in a bottom-up pass, i.e., for each non-root node 𝑅𝐹 with
parent𝑅𝐹𝑝 , we update𝑅𝐹𝑝 as𝑅𝐹𝑝 ← 𝑅𝐹𝑝 Z

⊗ 𝑅𝐹 and remove
𝑅𝐹 . The root relation is exactly the set of query results after
this phase terminates.

Example 3.2. Below we illustrate how the Yannakakis algorithm
works on the query shown in Figure 1b.

(1) Reduce. First, consider 𝑅2 (𝐴,𝐶) and its parent 𝑅1 (𝐴, 𝐵). We
reduce the node 𝑅2 after updating 𝑅1 ← 𝑅1 ⊲⊳⊗ 𝜋 ⊕

𝐴
(𝑅2).

Similarly, we then reduce the node 𝑅1 after updating 𝑅3 ←
𝑅3 ⊲⊳⊗ 𝜋 ⊕

𝐵
(𝑅1). Afterwards, we remove the non-output at-

tribute 𝐺 in 𝑅4 by updating 𝑅4 ← 𝜋 ⊕
𝐷,𝐹
(𝑅4). Now, three

nodes 𝑅4, 𝑅3 and 𝑅5 remain, which only contain output at-
tributes.

(2) Semijoin. We perform a bottom-up pass: 𝑅3 ← 𝑅3 ⋉⊗ 𝑅4,
𝑅5 ← 𝑅5⋉⊗𝑅3, followed by a top-down pass:𝑅3 ← 𝑅3⋉⊗𝑅5,
𝑅4 ← 𝑅4 ⋉⊗ 𝑅3, so that dangling tuples are removed.

(3) Full join. Finally, we compute 𝑅4 ⊲⊳⊗ 𝑅3 ⊲⊳⊗ 𝑅5 as the results
of the query. □

Correctness. The original Yannakakis algorithm has two phases:
the semijoin phase and the join-aggregate phase. Our modified
version splits the join-aggregate phase into the reduce phase and
the full join phase, and pulls the reduce phase in front of the semijoin
phase (for reasons that will become clear later). This modification

does not affect the correctness proof of the algorithm [18], which
shows that the query results are preserved after each individual
join, semijoin, and aggregation operation.

Complexity analysis. The complexity analysis of the modified
algorithm is also similar as the original algorithm. First, by building
appropriate indexes, a semijoin, a join, and a projection (including
their annotated versions) can all be done in time proportional to its
input and output size. Thus, it is sufficient to bound all the interme-
diate result sizes during the three phases of computation. Consider
the reduce phase. The aggregation 𝜋 ⊕

𝐹 ′ (𝑅𝐹) obviously does not en-
large the size of 𝑅𝐹 . The join 𝑅𝐹𝑝 ← 𝑅𝐹𝑝 Z

⊗ 𝜋 ⊕
𝐹 ′ (𝑅𝐹) does not

make 𝑅𝐹𝑝 larger, either, since 𝐹 ′ ⊆ 𝐹𝑝 (so it is basically a semi-
join). So this phase can be done in time O(IN). The semijoin phase
obviously cannot produce more tuples, so it can be done in time
O(IN), too. For the full join phase, since all remaining attributes
are output attributes and dangling tuples have been removed, every
intermediate result must be part of a final output tuple. Thus, any
intermediate result size is bounded by O(OUT).

4 SECURE QUERY EVALUATION
In this section, we formalize the problem of secure query processing
in the security two-party computation (2PC) model. Alice and Bob
each hold some relations as their private data, and agree to compute
a free-connex join-aggregate query jointly. The agreement also
includes a designated receiver (Alice or Bob, or both) who will get
the query results. Without loss of generality, we assume Alice is the
only receiver; if Bob is also a receiver, Alice can simply forward the
query results to Bob at the end of the protocol. We assume that the
database schema, the query, the input relation sizes, as well as the
output size are public knowledge. If the relation sizes are sensitive,
one could pad dummy tuples2 and release the relation size after the
padding. In this case, however, the input size IN must also include
these dummy tuples. Similarly, we can add dummy output tuples if
the true output size is sensitive.

Adversary. The security of a protocol must be measured against
some adversary, and various adversary models have been studied in
the literature. Broadly speaking, there are two types of adversaries:
semi-honest and malicious. In the semi-honest (a.k.a. honest but
curious) model, Alice and Bob will follow the prescribed protocol,
but will try to learn information about the other party’s data from
the transcript of the protocol. Thus, protocols designed in this model
are often said to be oblivious, i.e., their transcripts do not reveal any
information other than the query results. This model is suitable for
scenarios where both parties can guarantee their correct execution
of the protocol, but there are data leakage threats, e.g., internal
employees spying on the protocol or hackers stealing information.

In addition to observing the transcript, a malicious party may
deviate from the protocol arbitrarily, in an attempt to learn the other
party’s private data. This is a much stronger security model, and it
often requires more costly protocols. Another point to note is that,
since a malicious party can deviate from the protocol arbitrarily,
he may completely change his own data. Thus, the query results

2We can reserve a special region in the domain of each attribute to draw dummy tuples
from. All dummy tuples are zero-annotated, so that they do not contribute to the query
result, which can be proved.

are not guaranteed to be correct in this model, unlike in the semi-
honest model. We will only study the semi-honest model in this
paper. Nevertheless, there are generic approaches that can be used
to harden a semi-honest protocol into a malicious-secure protocol,
such as cut-and-choose [9], zero-knowledge proofs [15], BDOZ [8]
and SPDZ [11]. These hardening techniques in principle should
also apply to our protocol, but we leave the details to future work.

Security Definition. To formalize the notion of “not learning any
information beyond the query results”, we introduce the real-ideal
world paradigm. In the ideal world, Alice and Bob send their data
to a trusted third party, who evaluates the query, and returns the
results to Alice (the designated receiver); Bob gets no output. In the
real world, they follow the prescribed protocol to evaluate the query.
The view of a party (in either the ideal and real world) consists of
all messages s/he has sent and received during the protocol, plus
her/his own input and output. The protocol is secure if, for any
input and any adversaryA in the real world, there exists a simulator
such that, given A’s ideal-world view, the simulator can produce a
view that is indistinguishable fromA’s real-world view. This means
that everythingA sees in the real world can be completely created
from what s/he sees in the ideal world, which simply consists of
her/his own input and output.

Our secure Yannakakis protocol is a sequential composition
of these individual protocols, whose individual security has been
proved. Besides, all intermediate results between these protocols
are oblivious, which clarifies the security of our protocol. We do not
provide formal proof of the security, as this is a standard framework
in security literature, such as [12].

Security Parameters. We still need to formalize the indistinguisha-
bility between two views, which can be perfect, statistical, or com-
putational. Note that oblivious protocols are often randomized, so
the simulator must also produce a random view. We have perfect
indistinguishability if the distributions of the real-world view and
the simulated view are identical; otherwise, we say they are statisti-
cally indistinguishable if the statistical distance (e.g. total variation)
between the two distributions is smaller than 2−𝜎 , where 𝜎 is the
statistical security parameter. Statistical indistinguishability does
not restrict the computing power of the adversary (thus it is also
called unconditional security).

For computational indistinguishability, we feed the view to a
probabilistic polynomial-time distinguisher, who tries to decide if
it is a real-world view or a simulated view, and we require that
the success probability be no more than 1/2 + 2−𝜎 . Computational
indistinguishability is often based on hardness assumptions on
certain problems like pseudo-random functions, discrete logarithm,
and integer factorization. The computational security parameters 𝜅
refers to the key length used in cryptographic primitives to achieve
computational indistinguishability.

Lastly, a protocol is also allowed to fail, i.e., it terminates without
computing the correct output. This probability is also set to 2−𝜎 ,
the same as that of breaching security.

All cryptographic primitives used in our protocol have costs
polynomial in ℓ , 𝜎, 𝜅, and we hide their dependency in the Õ no-
tation to simplify the expression. In practice, 𝜎 = 40, 𝜅 = 128 (for

symmetric encryption) or 1024 (for asymmetric encryption) are
considered sufficient in most applications.

5 CRYPTOGRAPHIC PRIMITIVES
5.1 Secret Sharing
A secret sharing scheme partitions a secret value 𝑣 ∈ Z𝑛 into two
shares, such that they can be used to reconstruct 𝑣 , but neither
alone reveals any information about 𝑣 . We use the notation J𝑣K to
stress that 𝑣 has been shared, and use J𝑣K1 and J𝑣K2 to represent
the share owned by Alice and Bob respectively. In this paper, we
use the following simple scheme, known as arithmetic sharing: pick
J𝑣K1 uniformly at random from Z𝑛 and set J𝑣K2 = (𝑣 − J𝑣K1) mod 𝑛.
It is clear that the two shares can reconstruct the secret as (J𝑣K1 +
J𝑣K2) mod 𝑛 = 𝑣 . Meanwhile, J𝑣K1 and J𝑣K2 are both uniformly
random numbers, so they reveal nothing about 𝑣 . In the sequel, all
the arithmetic operations are done modulo 𝑛, unless stated otherwise.

Our secure Yannakakis algorithm is composed of oblivious pro-
tocols for individual relational operators. However, a key difficulty
is that we are not allowed to reveal the intermediate results (in-
cluding their sizes and access patterns). Thus, we will hide all the
intermediate results using secret sharing, which means that the
individual relational operators may need to take inputs that are
secret-shared, and also produce outputs in shared form. In this
case, we simply say that the input to the operator is J𝑣K and the
output is J𝑢K, meaning that the Alice inputs J𝑣K1, Bob inputs J𝑣K2,
while they obtain J𝑢K1 and J𝑢K2 as their respective output. The
oblivious protocol for the operator will make sure that neither
learns the other’s share when evaluating the operator. As a simple
example, computing 𝑧 = 𝑥 + 𝑦 can be done easily in the shared
form (actually without any communication): Alice simply computes
J𝑧K1 = J𝑥K1 + J𝑦K1, and Bob computes J𝑧K2 = J𝑥K2 + J𝑦K2. It can be
verified that J𝑧K1 + J𝑧K2 = J𝑥K1 + J𝑥K2 + J𝑦K1 + J𝑦K2 = 𝑥 + 𝑦, i.e.,
J𝑧K1 and J𝑧K2 form a valid secret sharing of 𝑧.

A value 𝑣 can be converted to J𝑣K easily: Suppose Alice holds a
value 𝑣 . She just picks a random J𝑣K1 and sends J𝑣K2 = 𝑣 − J𝑣K1 to
Bob. Conversely, to go from J𝑣K to 𝑣 , we ask one party, say Bob, to
send his share to Alice. We call this operation revealing 𝑣 to Alice.
In our protocol, we will only reveal non-private information, which
includes the query results (or anything that can be inferred from
the query results), random numbers, or ciphertext.

5.2 Garbled Circuits
As mentioned, garbled circuits [35] provide a generic 2PC solution.
While it is inefficient to express the whole query as a gigantic
circuit, we still make use of small garbled circuits for key operations
in our protocol. We will not elaborate on how it works (see [14]
for an excellent description), but only define its input and output.
Given a public function expressed as a Boolean circuit and Alice
and Bob’s private data (which may be in secret-shared form), the
garbled circuit protocol securely evaluates function, and obtains
the output in secret-shared form. A garbled circuit can be evaluated
with communication cost and running time both Õ(size of circuit),
and it requires a constant number of communication rounds.

One technicality is that garbled circuits are Boolean circuits,
while the input and output used in our protocol are integers drawn
from Z𝑛 . While input integers can be converted to log𝑛 Boolean

values straightforwardly, the output Boolean values of the garbled
circuit are shared using Yao’s secret sharing. Fortunately, there is a
simple technique [12] that can convert an integer whose bits are
Yao-shared to an arithmetically shared form as described above.

5.3 Private Set Intersection (PSI)
In the private set intersection (PSI) problem, Alice has a set 𝑋 with
size𝑀 and Bob has a set 𝑌 with size 𝑁 , and the goal is to compute
𝑋 ∩ 𝑌 . Most PSI protocols in the literature reveal the output 𝑋 ∩ 𝑌
to Alice, which is fine and actually required by the PSI problem.
However, we will be using PSI to produce intermediate results that
cannot be revealed; instead, the output should only be obtained in
its secret-shared form, which will be further processed by other
operators.

The recent PSI protocol of Pinkas et al. [27] fits our purpose,
which runs in a constant number of rounds and has Õ(𝑀 + 𝑁)
running time and communication. First, Alice picks 3 random in-
dependent hash functions to build a cuckoo hash table [25] with
𝐵 = O(𝑀) bins3 on 𝑋 . The details of cuckoo hashing are not im-
portant for understanding how to use this PSI protocol. All we
need to know is that each element in 𝑋 is mapped to one of the 3
locations specified by the 3 hash functions, and with probability at
least 1 − 2𝜎 , each bin contains at most one element in 𝑋 . Let 𝑥𝑖 be
the element in𝑋 that is mapped to the 𝑖-th bin; 𝑥𝑖 is set to a dummy
value if the 𝑖-th bin is empty. Alice sends the 3 hash functions to
Bob, who also builds a hash table on his set 𝑌 . Bob does not use
cuckoo hashing, but hashes each element in 𝑌 to all 3 bins specified
by the hash functions. Then they run the PSI protocol on the bins.
At the end of the protocol, Alice and Bob obtain JInd(𝑥𝑖 ∈ 𝑌)K for
each 𝑖 ∈ [𝐵], where Ind(·) is the indicator function.

In addition, the PSI protocol in [27] supports payload sharing,
which will also be useful. More precisely, Bob has a payload 𝑧 𝑗 ∈
Z𝑛 for each 𝑦 𝑗 ∈ 𝑌 . At the end of the protocol, in addition to
JInd(𝑥𝑖 ∈ 𝑌)K for each 𝑖 ∈ [𝐵], the protocol also returns J𝑧 𝑗 K if
𝑥𝑖 = 𝑦 𝑗 for some 𝑗 ; otherwise, it returns J0K4.

Example 5.1. By using garbled circuits and the PSI protocol, we
can already evaluate some simple join-aggregate queries, such as
𝜋 ⊕person (𝑅1 (person, coinsurance) Z⊗ 𝑅2 (person, disease, cost)),
assuming each person has at most one record in 𝑅1 (likely the case)
as well as in 𝑅2 (unlikely the case). Let Alice be the insurance com-
pany, who is also the designated receiver of the query results, and
Bob the hospital. We first run PSI on 𝑅1 and 𝑅2, treating the person
attributes as elements of the two sets, and the annotations (i.e., the
cost attributes) as 𝑅2’s payloads. Let 𝑡 (1)𝑖

∈ 𝑅1 be the tuple in the
𝑖-th bin in Alice’s cuckoo hash table. The PSI protocol will return,
for each 𝑖 ∈ [𝐵], JInd(𝑡 (1)

𝑖
∈ 𝑅2)K and J𝑣 (𝑡 (2)

𝑗
)K, where 𝑣 (𝑡 (2)

𝑗
) is

the annotation of the tuple 𝑡 (2)
𝑗
∈ 𝑅2 that joins with 𝑡

(1)
𝑖

, if such
a 𝑡 (2)

𝑗
exists, and 0 otherwise. Next, we build a garbled circuit for

each 𝑖 , where Alice inputs 𝑣 (𝑡 (1)
𝑖
) (i.e., 100*(1-coinsurance) of

the tuple 𝑡 (1)
𝑖

) and J𝑣 (𝑡 (2)
𝑗
)K1, and Bob inputs J𝑣 (𝑡 (2)

𝑗
)K2. The circuit

3In practice, having 𝐵 = 1.27𝑀 bins is sufficient.
4The original PSI protocol [27] does not directly return JInd(𝑥𝑖 ∈ 𝑌)K or J0K, but
they can be obtained by using a garbled circuit on their output.

computes (the secret shares of)

𝑣 (𝑡 (1)
𝑖
) ⊗ ((J𝑣 (𝑡 (2)

𝑖
)K1 + J𝑣 (𝑡 (2)

𝑖
)K2)) = 𝑣 (𝑡 (1)

𝑖
) ⊗ 𝑣 (𝑡 (2)

𝑖
),

which is the payment the insurance company needs to make for
person 𝑡

(1)
𝑖

. Finally, we reveal the results of the 𝐵 garbled circuits
to Alice.

Note that even if 𝑡 (1)
𝑖

is a dummy tuple with annotation 0 (and
Alice knows it), they still have to evaluate the circuit; otherwise,
Bob would know that the 𝑖-th bin of the cuckoo hash table is empty,
which could leak information about 𝑅1 to Bob (this can be consid-
ered as the access pattern of the output being leaked). For a dummy
𝑡
(1)
𝑖

, the garbled circuit will return J0K, but all Bob receives is J0K2,
which is just a random number, indistinguishable from J𝑣K2 for any
real query result 𝑣 .

It is not surprising that garbled circuits and PSI are enough
for this simple query, as under the strong assumption that the
person attribute is unique in both relations, it is really just set
intersection. To handle more general free-connex join-aggregate
queries, we need to make relational operators such as semijoin, join,
and projection-aggregation oblivious, which we introduce in the
next section. □

5.4 Oblivious Extended Permutation (OEP)
Suppose Alice holds a function 𝜉 : [𝑁] → [𝑀], and Bob holds
a length-𝑀 sequence {𝑥𝑖 }𝑀𝑖=1 where each 𝑥𝑖 ∈ Z𝑛 . The function
𝜉 is also called an extended permutation. In the oblivious extended
permutation (OEP) problem [24], they wish to securely map the
sequence {𝑥𝑖 }𝑀𝑖=1 to a length-𝑁 sequence {𝑦𝑖 }𝑁𝑖=1 as specified by
𝜉 , i.e., 𝑦𝑖 = 𝑥𝜉 (𝑖) . The output {𝑦𝑖 } must be obtained in a shared
form. The OEP protocol of Mohassel and Sadeghian [24] solves the
problem with Õ(𝑀 + 𝑁) running time and communication cost.

If the sequence {J𝑥𝑖K}𝑀𝑖=1 is given in secret-shared form, we can
still use OEP to permute it, as follows. Suppose Alice holds the
private permutation function 𝜉 : [𝑁] → [𝑀], and they wish
to permute {J𝑥𝑖K} while keeping 𝜉 and {𝑥𝑖 } private. We invoke
OEP on Bob’s shares {J𝑥𝑖K2} with 𝜉 , which results in Alice obtain-
ing JJ𝑥𝜉 (𝑖)K2K1 and Bob JJ𝑥𝜉 (𝑖)K2K2. Alice then locally computes
JJ𝑥𝜉 (𝑖)K2K1+J𝑥𝜉 (𝑖)K1, which alongwith JJ𝑥𝜉 (𝑖)K2K2 forms the shares
of J𝑥𝜉 (𝑖)K as required:

JJ𝑥𝜉 (𝑖)K2K1 + J𝑥𝜉 (𝑖)K1 + JJ𝑥𝜉 (𝑖)K2K2 = J𝑥𝜉 (𝑖)K1 + J𝑥𝜉 (𝑖)K2 = 𝑥𝜉 (𝑖) .

Note that the new shares of {𝑥𝜉 (𝑖) } are generated by the OEP
protocol using fresh randomness, so they reveal nothing about the
original shares of {𝑥𝑖 }.

5.5 PSI with Secret-shared Payloads
In Example 5.1, we used PSI to share payloads {𝑧 𝑗 } associated with
Bob’s set 𝑌 = {𝑦 𝑗 }. In queries involving more than one join, the
payloads of intermediate results are not explicitly given, but are
secret-shared, i.e., Alice holds {J𝑧 𝑗 K1} and Bob holds {J𝑧 𝑗 K2}. The
trivial way of revealing {𝑧 𝑗 } to Bob and then running PSI would
not work as {𝑧 𝑗 } can be intermediate results that have been derived
from not only Bob’s data, thus must be protected. Belowwe propose
a protocol to tackle this issue with Õ(𝑀 + 𝑁) running time and
communication to solve the problem.

Let 𝐵 be the size of Alice’s cuckoo hash table in the PSI protocol.
First they locally extend the shares {J𝑧 𝑗 K}𝑁𝑗=1 to {J𝑧 𝑗 K}

𝑁+𝐵
𝑗=1 with

J𝑧 𝑗 K1 = J𝑧 𝑗 K2 = 0 for 𝑗 > 𝑁 . Then they use OEP to permute
the shares from {J𝑧 𝑗 K}𝑁+𝐵𝑗=1 to {J𝑧′

𝑗
K}𝑁+𝐵

𝑗=1 , where 𝑧′
𝑗
= 𝑧𝜉1 (𝑗) and

𝜉1 : [𝑁 + 𝐵] → [𝑁 + 𝐵] is a random permutation (bijection) locally
generated by Bob. Afterwards, they run the PSI protocol of [27] on
𝑋 and 𝑌 , while the payload of 𝑦 𝑗 is 𝜉−11 (𝑗), where 𝜉

−1
1 is the inverse

permutation of 𝜉1. Note that 𝑧′
𝜉−11 (𝑗)

= 𝑧 𝑗 .
Let 𝑥𝑖 be the element in the 𝑖-th bin of Alice’s cuckoo hash

table. The PSI protocol will return JInd(𝑥𝑖 ∈ 𝑌)K and J𝜉−11 (𝑗)K, if
𝑥𝑖 = 𝑦 𝑗 for some 𝑦 𝑗 ∈ 𝑌 . We build a garbled circuit with inputs
JInd(𝑥𝑖 ∈ 𝑌)K, J𝜉−11 (𝑗)K (from both Alice and Bob), and 𝜉−11 (𝑁 + 𝑖)
(from Bob). The garbled circuit outputs {𝑘𝑖 }𝐵𝑖=1 to Alice, where
𝑘𝑖 = 𝜉−11 (𝑗) if Ind(𝑥𝑖 ∈ 𝑌) = 1, and 𝑘𝑖 = 𝜉−11 (𝑁 + 𝑖) otherwise.
Among {𝑘𝑖 }𝐵𝑖=1, |𝑋 ∩ 𝑌 | are 𝜉−11 (𝑗) for different 𝑗 ∈ [𝑁], while
the rest are 𝜉−11 (𝑁 + 𝑖) for different 𝑖 ∈ [𝐵]. Recall that 𝜉1 is a
random permutation from [𝑁 + 𝐵] to [𝑁 + 𝐵], so these values are
distinct numbers drawn from [𝑁 +𝐵] uniformly at random without
replacement, which carry no information about Bob’s data.

Finally, they use another OEP to permute the shares from {J𝑧′
𝑗
K}𝑁+𝐵

𝑗=1
to {J𝑧′′

𝑖
K}𝐵

𝑖=1, using the permutation function 𝜉2 : [𝐵] → [𝑁 + 𝐵]
where 𝜉2 (𝑖) = 𝑘𝑖 . Note that 𝑧′′

𝑖
= 𝑧′

𝑘𝑖
= 𝑧𝜉1 (𝑘𝑖) . When 𝑥𝑖 = 𝑦 𝑗

for some 𝑦 𝑗 ∈ 𝑌 , 𝑧𝜉1 (𝑘𝑖) = 𝑧𝜉1 (𝜉−11 (𝑗))
= 𝑧 𝑗 , otherwise 𝑧𝜉1 (𝑘𝑖) =

𝑧𝜉1 (𝜉−11 (𝑁+𝑖))
= 𝑧𝑁+𝑖 = J𝑧𝑁+𝑖K1 + J𝑧𝑁+𝑖K2 = 0. We have thus ob-

tained the required payloads in shared form, as desired.

6 SECURE YANNAKAKIS
Nowwe are ready to describe our oblivious protocols for projection-
aggregation, semijoin, and join, which form the building blocks
of the Yannakakis algorithm. In order to assemble them together,
the oblivious protocol of each relational operator must meet the
following requirements:

(1) Each input relation is held by either Alice or Bob.
(2) The output relation will be held by one party, say Alice. The

tuples in the output relation can only depend on Alice’s input
relations and the query results.

(3) The annotations of the input and output relations are held
by Alice and Bob in shared form.

(4) The transcript of the protocol does not leak any private
information. In addition to protecting each party’s input
relations and shares, we must ensure that

(a) the size of the output relation only depends on public
information (input relation sizes and query result size),
not the actual input tuples; and

(b) the access pattern for each input and output tuples (and
their annotations) is indistinguishable.

Next, we present our protocol for each of the relational operators.

6.1 Oblivious Projection-Aggregation
The Yannakakis algorithm requires two different projection-aggregation
operators. The first one is 𝜋 ⊕

𝐹
(𝑅), while the second one is 𝜋1

𝐹
(𝑅).

We first provide a protocol to obliviously compute the former, and
then discuss how to modify it for handling the latter.

Computing 𝜋 ⊕
𝐹
(𝑅). Suppose Alice holds an annotated relation 𝑅

of size 𝑁 , and she would like to compute 𝜋 ⊕
𝐹
(𝑅). Note that since

Alice has 𝑅, she can easily compute the projection 𝜋𝐹 (𝑅). The
challenge is computing the aggregates. Note that the annotations
of 𝑅 are given in shared form, and the aggregates must also be
returned in shared form as well. Below, we describe our protocol for
computing 𝜋 ⊕

𝐹
(𝑅), which uses Õ(𝑁) communication and running

time, and it can be done in a constant number of rounds.
First, Alice locally sorts the tuples in 𝑅 by 𝐹 , so that tuples with

the same value on 𝐹 are consecutive. Then, Alice and Bob use
OEP to permute the shares of the annotations so that they are
consistent with the sorted tuples. Then the idea is to simply add up
the annotations one by one, while resetting the sum to 0 whenever
a new value on 𝐹 is encountered. To make this algorithm oblivious,
we use a garbled circuit.

Let {𝑡𝑖 }𝑁𝑖=1 be the tuples after sorting, and let 𝑣 (𝑡𝑖) be the anno-
tation of 𝑡𝑖 . They build a garbled circuit with 𝑁 − 1 merge gates.
The inputs to the 𝑖-th merge gate include Ind(𝑡𝑖 .𝐹 = 𝑡𝑖+1 .𝐹) (from
Alice), J𝑣 (𝑡𝑖+1)K (from both Alice and Bob), and J𝑧𝑖K, which is an
output from the (𝑖 − 1)-th gate (except that 𝑧1 = 𝑣 (𝑡1)). The gate
then computes two outputs (in the shared form):

𝑧′𝑖 = (1 − Ind(𝑡𝑖 .𝐹 = 𝑡𝑖+1 .𝐹)) · (J𝑧𝑖K1 + J𝑧𝑖K2),
𝑧𝑖+1 = (Ind(𝑡𝑖 .𝐹 = 𝑡𝑖+1 .𝐹) · 𝑧𝑖) ⊕ (J𝑣 (𝑡𝑖+1K1 + J𝑣 (𝑡𝑖+1K2) .

Consider all tuples with a particular value on 𝐹 , say 𝑡𝑖 , . . . , 𝑡 𝑗 .
It should be clear that 𝑧′

𝑗
is the ⊕-aggregate of their annotations

(except that if 𝑗 = 𝑁 , the aggregate is 𝑧𝑁), while 𝑧′
𝑖
= · · · = 𝑧′

𝑗−1 =
0. Alice knows this fact, but in order to hide the size and access
patterns of the output relation, Alice will put all tuples into the
output relation. More precisely, she will put 𝑡 𝑗 .𝐹 into the output
relation with annotation J𝑧′

𝑗
K (or J𝑧𝑁 K if 𝑗 = 𝑁); for each 𝑡𝑘 , 𝑘 =

𝑖, . . . , 𝑗 − 1, she will put a dummy tuple into the output relation with
annotation J𝑧′

𝑗
K. Thus, technically speaking the output relation is

not 𝜋 ⊕
𝐹
(𝑅), but one that is semantically equivalent to 𝜋 ⊕

𝐹
(𝑅), as

all dummy tuples have annotation J0K. Note that Bob does not
know which tuples are dummy since he only has his shares of the
annotations.

It is obvious that the circuit has size O(𝑁), so it takes Õ(𝑁)
time and communication to evaluate. Its depth is also O(𝑁), but
the number of rounds needed is always a constant, regardless of
the depth of the garbled circuit [14].

Computing 𝜋1
𝐹
(𝑅). Now consider 𝜋1

𝐹
(𝑅), where the annotations

of 𝑅 are given in shared form. Recall that 𝜋1
𝐹
(𝑅) = 𝜋𝐹 ({𝑡 ∈ 𝑅 |

𝑣 (𝑡) ≠ 0}), while the annotations of all tuples in 𝜋1
𝐹
(𝑅) are set to

1. However, we cannot let Alice know the relation 𝜋1
𝐹
(𝑅), which

depends on the annotations of 𝑅. Instead, we will return an output
relation that is semantically equivalent to 𝜋1

𝐹
(𝑅) to Alice. The out-

put relation contains all tuples in 𝜋𝐹 (𝑅). For a tuple 𝑡 ∈ 𝜋1𝐹 (𝑅), its
annotation in the output relation will be J1K; all other tuples will
have annotation J0K. This is consistent with the definition as zero
annotation has no contribute to the aggregates. Besides, to hide the
output size from Bob, Alice also pads some dummy tuples to the
output relation so that it has 𝑁 tuples.

We modify the aggregation protocol above to compute such a
semantically equivalent 𝜋1

𝐹
(𝑅), as follows. First, we still sort 𝑅 by

𝐹 and permute the shares accordingly. Then we build the 𝑁 − 1
merge gates as before. However, the input to each merge gate will
be JInd(𝑣 (𝑡𝑖) ≠ 0)K, which can be computed by another garbled
circuit. Meanwhile, in the merge gate, we replace the semiring
addition ⊕ with ∨ (logic OR). It can be verified that, in this way, the
protocol above indeed computes a semantically equivalent 𝜋1

𝐹
(𝑅)

of size 𝑁 , as desired.

6.2 Oblivious Semijoin
The Yannakakis algorithm uses two types of semijoins. The first
type is actually an annotated join 𝑅 = 𝑅𝐹 Z

⊗ 𝑅𝐹 ′ but with the
constraint 𝐹 ′ ⊆ 𝐹 , which is used in the reduce step. The second
type is an annotated semijoin 𝑅 = 𝑅𝐹 ⋉⊗ 𝑅𝐹 ′ with no constraints
on 𝐹 and 𝐹 ′, which is used in the semijoin step. We first show how
to compute the first type, then the second type can be solved easily.

Computing 𝑅 = 𝑅𝐹 Z
⊗ 𝑅𝐹 ′ . Suppose Alice holds 𝑅𝐹 , Bob holds

𝑅𝐹 ′ , and Alice will also hold the output relation 𝑅. The annotations
of 𝑅𝐹 and 𝑅𝐹 ′ are shared, and the annotations of 𝑅 should also be
obtained in shared form. Since the tuples in the output relation 𝑅

cannot depend on 𝑅𝐹 ′ , tuples in 𝑅𝐹 that cannot join with 𝑅𝐹 ′ should
not be eliminated; instead, we set their annotations to J0K. For a
tuple 𝑡 (1) ∈ 𝑅𝐹 that can join with some 𝑡 (2) ∈ 𝑅𝐹 ′ , its annotation
should be J𝑣 (𝑡 (1)) ⊗ 𝑣 (𝑡 (2))K. Thus, 𝑅 will have the same set of
tuples as 𝑅𝐹 , but with new annotations. All the new annotations
will also be obtained in shared form so that no party knows their
actual values; in particular, no one knows which tuples in 𝑅𝐹 can
or cannot join with 𝑅𝐹 ′ . Suppose the sizes of 𝑅𝐹 and 𝑅𝐹 ′ are𝑀 and
𝑁 , respectively. Below we provide a protocol that runs in constant
rounds with Õ(𝑀 + 𝑁) running time and communication cost.

First, Alice locally computes𝑋 = 𝜋𝐹 ′ (𝑅𝐹). Then she pads𝑋 with
dummy tuples so that 𝑋 still has𝑀 tuples. Bob’s input is 𝑌 = 𝑅𝐹 ′ .
Then they run PSI with secret-shared payloads on 𝑋 and 𝑌 , where
the payloads of 𝑌 are their annotations in 𝑅𝐹 ′ . Let 𝑥𝑖 be the item in
the 𝑖-th bin in Alice’s cuckoo hash table. Recall that the PSI protocol
will return J𝑧𝑖K, where 𝑧𝑖 = 𝑣 (𝑡 (2)) for some 𝑡 (2) ∈ 𝑅𝐹 ′ that can
join with 𝑥𝑖 ; if such a 𝑡 (2) does not exist, 𝑧𝑖 = 0. Next, Alice defines
an extended permutation 𝜉 : [𝑀] → [𝐵] as follows. For each
tuple 𝑡 (1)

𝑗
∈ 𝑅𝐹 , if 𝑡 𝑗 .𝐹 ′ falls into the 𝑖-th bin in the cuckoo hash

table, then 𝜉 (𝑗) = 𝑖 . Then they use OEP to permute these shares
{J𝑧𝑖K} according to 𝜉 , so that for each 𝑗 ∈ [𝑀], Alice and Bob have
J𝑧′

𝑗
K, where 𝑧′

𝑗
= 𝑧𝜉 (𝑗) = 𝑧𝑖 . Then they use 𝑀 garbled circuits to

compute J𝑣 (𝑡 (1)
𝑗
) ⊗ 𝑧′

𝑗
K as the new annotation of 𝑡 (1)

𝑗
. This is the

desired output, since if 𝑡 (1)
𝑗

can join with some 𝑡 (2) ∈ 𝑅𝐹 ′ , then
𝑧′
𝑗
= 𝑧𝑖 = 𝑣 (𝑡 (2)); otherwise 𝑧′

𝑗
= 𝑧𝑖 = 0.

Computing𝑅 = 𝑅𝐹⋉⊗𝑅𝐹 ′ . By definition,𝑅 = 𝑅𝐹 Z
⊗ 𝜋1

𝐹∩𝐹 ′ (𝑅𝐹 ′).
Recall that𝜋1

𝐹∩𝐹 ′ (𝑅𝐹 ′) denotes the projection of the nonzero-annotated
tuples in 𝑅𝐹 ′ , while setting all their annotations to 1. First they com-
pute 𝜋1

𝐹∩𝐹 ′ (𝑅𝐹 ′) by the oblivious projection-aggregation protocol.
Then they run the protocol above. Note that the output relation 𝑅

will have the same set of tuples as 𝑅𝐹 , but with possibly different
annotations. More precisely, for any tuple 𝑡 ∈ 𝑅𝐹 that can join with
at least one nonzero-annotated tuple in 𝑅𝐹 ′ , its annotation in 𝑅 is
the same as that in 𝑅𝐹 ; otherwise its annotation in 𝑅 is set to J0K.

When 𝑅𝐹 and 𝑅𝐹 ′ are held by the same party. The protocol above
that computes 𝑅 = 𝑅𝐹 Z

⊗ 𝑅𝐹 ′ assumes that 𝑅𝐹 and 𝑅𝐹 ′ are held by
different parties. If they are held by the same party, say Alice (the
annotations are still secret-shared between Alice and Bob), then
the protocol can be simplified. There is no need to run PSI. First,
Alice adds a dummy tuple to 𝑅𝐹 ′ . Then she locally permutes 𝑅𝐹 ′
to obtain a list of (𝑡 (1) , 𝑡 (2)) pairs, where 𝑡 (2) is the tuple in 𝑅𝐹 ′

that joins with 𝑡 (1) ; if such a 𝑡 (2) does not exist, Alice sets 𝑡 (2) to
the dummy tuple. This list thus replaces Alice’s cuckoo hash table.
Then as before they use OEP to permute the shares of 𝑅𝐹 ′ to be
consistent with the list. Note that the zero annotation of the dummy
tuple is refreshed to shares by OEP, so Bob learns nothing from
it. Finally, they use a garbled circuit to compute the annotation
J𝑣 (𝑡 (1)) ⊗ 𝑣 (𝑡 (2))K for each (𝑡 (1) , 𝑡 (2)) pair. Note that even if 𝑡 (2) is
a dummy tuple and Alice thus knows that the resulting annotation
will be 0, she still has to evaluate the garbled circuit with Bob, so as
to hide the access pattern of the output relation. For the annotated
semijoin 𝑅 = 𝑅𝐹 ⋉ 𝑅𝐹 ′ , if Alice has both 𝑅𝐹 and 𝑅𝐹 ′ , then as before
we rewrite the semijoin as 𝑅 = 𝑅𝐹 Z

⊗ 𝜋1
𝐹∩𝐹 ′ (𝑅𝐹 ′), and then run

this simplified protocol.

6.3 Oblivious Join
In the oblivious join problem, Alice and Bob jointly compute an
annotated join J =Z⊗

𝐹 ∈E 𝑅𝐹 defined by an acyclic hypergraph
H = (V, E). Each relation 𝑅𝐹 is possessed by either Alice or Bob,
with annotations shared. We require that all dangling tuples are
zero-annotated, which do not contribute to the query result. For
any relation 𝑅, we use 𝑅∗ to denote the set of nonzero-annotated
tuples in 𝑅. As output, the protocol will return J ∗ to Alice, with
annotations obtained in shared form. Besides, the size |J ∗ | is also
outputted to Bob, which is allowed asmentioned in Section 4. Unlike
our oblivious protocols for projection-aggregation and semijoin,
the tuples in output relation of an oblivious join depend on both
Alice’s and Bob’s input relations. Therefore, it can only be used as
the last operator in a query plan, so that the query results include
J ∗, which can therefore be revealed.

Below, we present our oblivious join protocol. It runs in constant
rounds with Õ(IN + OUT) running time and communication cost,
where IN =

∑
𝐹 ∈E |𝑅𝐹 | and OUT = |J ∗ |.

Our protocol runs in three steps:
(1) Reveal. By our assumption on the dangling and non-dangling

tuples’ annotations, we have 𝑅∗
𝐹
= 𝜋𝐹 (J ∗) for every relation

𝑅𝐹 . This implies that 𝑅∗
𝐹
(but not its annotations) can be

derived from J ∗, so it can be revealed to Alice. Therefore,
we use |𝑅𝐹 | garbled circuits to checkwhether 𝑣 (𝑡) = J𝑣 (𝑡)K1+
J𝑣 (𝑡)K2 = 0 for 𝑡 ∈ 𝑅𝐹 , and return a dummy tuple (if the
answer is “yes”) or 𝑡 (if the answer is “no”) to Alice. If 𝑡 is
not dummy, Alice puts it into 𝑅∗

𝐹
. The running time and

communication cost of this step are Õ(IN).
(2) Join. Now for any relation 𝑅𝐹 , Alice knows 𝑅∗

𝐹
. She can

then locally compute the join J ∗ =Z𝐹 ∈E 𝑅∗
𝐹
using the non-

annotated Yannakakis algorithm, and sends OUT = |J ∗ | to
Bob. If Alice does not want Bob to learn the exact value of
OUT, she may pad dummy tuples to J ∗, and send the size
of J ∗ after padding. The step takes time Õ(IN + OUT), but
the communication cost is just a constant.

(3) Compute annotations.We still need to compute the annota-
tions of J ∗ in shared form. Let 𝑡𝑖 be the 𝑖-th tuple of J ∗.
For each relation 𝑅𝐹 , Alice defines an extended permutation
𝜉𝐹 : [OUT] → [|𝑅𝐹 |] where 𝜉𝐹 (𝑖) equals to the index of
𝜋𝐹 (𝑡𝑖) in 𝑅𝐹 , for 𝑖 ∈ [OUT]. Then Alice and Bob use OEP to
permute the annotations of 𝑅𝐹 , so that they learn the shares
{J𝑣 (𝜋𝐹 (𝑡𝑖))K}. Finally, for each 𝑡𝑖 ∈ J ∗, they compute its an-
notation J𝑣 (𝑡𝑖)K = J⊗𝐹 ∈E𝑣 (𝜋𝐹 (𝑡𝑖))K using a garbled circuit.
This step has time and communication cost Õ(IN + OUT).

6.4 The Secure Yannakakis Algorithm
With all the building blocks in place, we are ready to describe our
secure Yannakakis protocol, as follows.

(1) Reduce. In the reduce step, the algorithm makes a bottom-
up pass over the join tree T , while performing the update
𝑅𝐹𝑝 ← 𝑅𝐹𝑝 Z

⊗ 𝜋 ⊕
𝐹 ′ (𝑅𝐹) where 𝐹 ′ ⊆ 𝐹𝑝 . This is further

decomposed into two steps: computing 𝜋 ⊕
𝐹 ′ (𝑅𝐹) and then

the semijoin. The former can be computed by our oblivious
projection-aggregation protocol, while the latter by oblivious
semijoin. Recall that our oblivious protocols do not change
the size of 𝑅𝐹𝑝 , but only its annotations. Therefore, the total
cost of this step is Õ(IN).

(2) Semijoin. The original Yannakakis algorithm uses two passes
of semijoins to remove all dangling tuples, which is not
oblivious. Instead, we will mark dangling tuples as dummy,
i.e., setting their annotations to 0, which can be computed
by our oblivious semijoin protocol. The total cost of this step
is also Õ(IN).

(3) Full Join. After the previous phases, only output attributes
remain and dangling tuples are all zero-annotated. We can
then invoke our oblivious join protocol to compute the full
join results J ∗. Recall that the oblivious join protocol com-
putes the annotations of J ∗ in shared form, but we can just
reveal these annotations to Alice, as they are part of the
query results. The cost of this step is Õ(IN + OUT).

Remark. In fact, we could also make the original two-phase Yan-
nakakis algorithm oblivious. However, doing oblivious semijoins
before the Reduce phase would incur unnecessary computation
involving relations that should have been reduced.

6.5 Optimizations
In this section, we introduce how to improve our protocol in some
cases when they have more public information.

When a party has the relation and its annotations. In most cases,
each of the input relation to the Yannakakis algorithm is fully
known by a party, including its annotations. In this case, the an-
notated projection-aggregation can be directly computed locally,
and in the oblivious semijoin protocol, when the annotations of
Bob’s relation are fully known by Bob, they only need to run the
PSI protocol with payloads instead of the secret-shared version.
In particular, sometimes the annotations are the same and public,
e.g. computing the join-aggregate query size (count aggregation),
where the annotations of each input relation are all 1. In this case,
the oblivious semijoin protocol even degenerates to a simple PSI

protocol. Note that this optimization usually only works at the start
of the Yannakakis protocol, as for each protocol, the annotations of
the output relation becomes in shared form.

When a party holds a subtree containing the root node. Suppose
the relations that belong to Alice form a connected part that con-
tains the root node inT . In the bottom-up reduce step of Yannakakis
algorithm, first all computations are locally done on Bob’s relations,
and then they perform some oblivious semijoins, where all the an-
notations of Bob’s relations are known by Bob, so we only need to
use PSI with payloads. Afterwards, all computations are on Alice’s
relations, although the annotations are shared. Hence we only need
the simplified oblivious semijoin protocol. In a word, in this spe-
cial type of queries, we do not need to use PSI with secret-shared
payloads protocol, so the efficiency can be improved.

7 EXTENSIONS
Selection conditions. Suppose we are given a join-aggregate query

where there is a selection condition 𝜙𝐹 on each input relation 𝑅𝐹 .
Then we have the following options, depending on the privacy
requirement.

(1) If the selectivity of a condition 𝜙𝐹 is not private, then we can
simply replace 𝑅𝐹 with 𝜎𝜙𝐹

(𝑅𝐹) when running the secure
Yannakakis algorithm. In this case, the input size IN only
includes 𝜎𝜙𝐹

(𝑅𝐹), and the cost of the algorithm will be lower.
(2) If the selectivity of a condition 𝜙𝐹 is private, then we replace

all tuples in 𝑅𝐹 that do not satisfy 𝜙𝐹 with dummy tuples,
and then run the secure Yannakakis algorithm. The cost
does not decrease even though the query is only interested
in a subset of the tuples of 𝑅𝐹 . This is actually unavoidable,
since if the cost were reduced, the cost itself would reveal
information about the selectivity of 𝜙𝐹 .

(3) If the precise selectivity is private, but it is alright to reveal
some upper bound, then we can replace 𝑅𝐹 with 𝜎𝜙𝐹

(𝑅𝐹),
and then add some dummy tuples. This strikes a good balance
between cost and privacy, and is perhaps a common scenario
in practice. In Example 1.1, suppose there is a selection con-
dition on 𝑅1 that selects only customers in a particular state.
It is probably alright to reveal the total number of customers
in that state, or at least an upper bound.

Query composition. Some aggregation queries are not free-connex
join-aggregate queries by our precise definition, but they can be de-
composed into two or more such queries. For example, suppose we
replace sum with avg in the query of Example 1.1, then there is no
semiring that can make it into one join-aggregate query per se, but
obviously it suffices to compute the sum and count for each class,
both of which are free-connex join-aggregate queries. However,
since the sum and count are not in the final query results, we cannot
compute them out and do a division in plaintext. Fortunately, the
secure Yannakakis algorithm only outputs the join results to Alice,
with annotations obtained in shared form. Thus, we first run two
instances of the secure Yannakakis algorithm to compute the sum
and count in shared form for each class. Then, we use a garbled
circuit for each class to compute the avg, and only reveal the
avg to Alice. Query 8 and 9 in the experiment section also provide
examples of query decomposition.

Protecting privacy against query results. By definition of our 2PC
model, Alice will learn the query results. If the query results are
sensitive, then one can add noise following the theory of differential
privacy [13] as mentioned in Section 1. A widely used approach
is to first compute some measure of sensitivity Δ of an aggregate
in the query results, and then add to the aggregate a noise drawn
from the Laplace distribution with parameter Δ/𝜀, where 𝜀 is the
privacy parameter. This approach can be easily incorporated into
our protocol. Recently, Johnson et al. [19] proposed a simple mea-
sure of sensitivity for join-count queries, which only depends on
the maximum multiplicity of attribute values in each relation. Thus,
we just need Alice and Bob to find the maximum multiplicity, and
then compute Δ using an �̃� (1)-size garbled circuit. Finally, Bob
generates a random noise from the Laplace distribution and adds it
to the query result using another garbled circuit, before revealing
the result to Alice.

However, for join-aggregate queries where the aggregation func-
tion is not count, how to calculate a meaningful sensitivity measure
Δ is still an open problem. Nevertheless, any such measure can be
incorporated into our protocol, provided that Δ can be computed
by a circuit.

8 EXPERIMENTS
8.1 Queries
We tested with the following queries from the TPC-H benchmark.
We allow the set of relations to be arbitrarily partitioned between
Alice and Bob. Note that if a join involves two relations that are
owned by the same party, the join can be done locally. Therefore,
we actually tested the worst possible way to partition the relations.

Query 3. This query is already a free-connex join-aggregate
query in its vanilla form:
select o_orderkey, o_orderdate, o_shippriority,

sum(l_extendedprice * (1 - l_discount)) as revenue
from customer, orders, lineitem
where c_mktsegment = 'AUTOMOBILE'

and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-13'
and l_shipdate > date '1995-03-13'

group by o_orderkey, o_orderdate, o_shippriority;

We consider the selectivities of all the selection conditions to
be private. So during preprocessing, we replaced all the tuples not
satisfying these conditions with dummy tuples. The annotations of
lineitem are l_extendedprice*(1-l_discount), while they are
all 1 for other relations, except for dummy tuples. Note that after the
Reduce step in secure Yannakakis algorithm, the join tree has only
one node. Therefore we can simply reveal nonzero-annotated tuples
of the relation in this node, without going through the Semijoin and
Full Join steps.

Query 10. This query illustrates a case where the cost can be
reduced if some relations are public. As the parties can agree on
a common mapping between nations’ names and their keys, the
nation relation can be considered as public knowledge. This way,
the query can be simplified to the following one:

select c_custkey, c_name, c_nationkey,
sum(l_extendedprice * (1 - l_discount)) revenue

from customer, orders, lineitem
where c_custkey = o_custkey

and l_orderkey = o_orderkey
and o_orderdate >= date '1993-08-01'
and o_orderdate < date '1993-11-01'
and l_returnflag = 'R'

group by c_custkey, c_name, c_nationkey;

The original query has n_name as an output attribute instead
of c_nationkey. However, after obtaining the query results, the
receiver can easily look up the n_name from the nation relation.
Note that we perform the same query rewrite for all methods to be
evaluated.

Query 18. This query has a subquery in its where clause:
select c_name,c_custkey,o_orderkey,o_orderdate,

o_totalprice,sum(l_quantity)
from customer, orders, lineitem
where o_orderkey in (select l_orderkey

from lineitem
group by l_orderkey
having sum(l_quantity) > 300)

and c_custkey = o_custkey
and o_orderkey = l_orderkey

group by c_name,c_custkey,
o_orderkey,o_orderdate,o_totalprice;

Note that the subquery can be evaluated locally by the party
that possesses lineitem. However, in order to hide the result size
of the subquery, we need to add dummy tuples so that its size is
the same as the original lineitem relation.

Query 8. First, similar to Query 10, we assume nation and region
are public knowledge. Thus, we rewrite the query as follows:
select o_year, sum(case

when s_nationkey = 8 then volume
else 0 end) / sum(volume) as mkt_share

from (select s_nationkey,
extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume

from part, supplier, lineitem, orders, customer
where p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey in (8,9,12,18,21)
and o_orderdate between

date '1995-01-01' and date '1996-12-31'
and p_type = 'SMALL PLATED COPPER') as all_nations

group by o_year;

Although this query contains a subquery, its purpose is merely to
extract o_year from o_orderdate. By treating o_year as a virtual
column, this query is a join followed by an aggregation. However,
the aggregation to be computed is the ratio between two sums,
so there is no semigroup that can yield this aggregation directly.
Nevertheless, it can be composed into two join-aggregate queries
as described in Section 7. We compute the two sum aggregates, in

shared form, for every year. Each sum is a join-aggregate query. The
two queries use different annotations for supplier: The first query
uses Ind(s_nationkey=8) where Ind is the indicator function, and
the second one uses 1 for all tuples. Finally, we use a garbled circuit
to compute the ratio of the two sums for each year.

Query 9. As before, we first remove nation from the query:
select s_nationkey,o_year,sum(amount)
from(

select s_nationkey,
extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount)

- ps_supplycost * l_quantity as amount
from part,supplier,lineitem,partsupp,orders
where s_suppkey = l_suppkey

and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and p_name like '%green%'

) as profit
group by s_nationkey, o_year;

This is an acyclic join-aggregate query, but not free-connex,
because its two output attributes s_nationkey and o_year can-
not be put at the top of any join tree. Although we could have
used the GHD framework to convert it to a free-connex query,
there is a simpler way to get around, by exploiting the fact that
nation is public, and s_nationkey has a small domain size of 25.
We thus decompose this query into 25 queries, each correspond-
ing to one particular s_nationkey. For each such query, we re-
move s_nationkey from the group by, and add a selection con-
dition enforcing s_nationkey to be that particular nation. Fur-
thermore, the query has a complicated aggregation function that
cannot be evaluated by a single join-aggregate query, but, as in
Query 8, we can decompose it into two aggregates: The first com-
putes sum(l_extendedprice*(1-l_discount))while the second
computes sum(ps_supplycost*l_quantity). Then they locally
do subtractions on their corresponding shares of annotations, and
then reveal the results to Alice.

8.2 Experiment Setup
We implemented the secure Yannakakis protocol for the 5 queries
above with manually written code5 in C++. For benchmarking, we
measured the running time and communication cost in the non-
private setting, for which we simply run the query using MySQL.
The communication cost for the non-private setting is set to the
input size. We would have liked to compare with SMCQL, but we
have not been able to run queries other than the given examples
using their code6, while none of their examples has joins with more
than two relations. Therefore, we wrote a garbled circuit on our
own to just compute the Cartesian product of the relations and
apply join conditions on it, while ignoring all other operators. Thus,
the actual cost of SMCQL evaluating the full query can only be
higher. For example, our garbled circuit computing the join of the

5https://github.com/hkustDB/SECYAN
6https://github.com/smcql/smcql

https://github.com/hkustDB/SECYAN
https://github.com/smcql/smcql

Figure 2: The time and cost of Query 3

3 relations in Query 3, consisting a total of 7,655 tuples, took 2.8
hours, while SMCQL reportedly took a single day to run a query
involving two relations with hundreds of tuples [6].

We used the TPC-H data generator to generate 5 datasets of sizes
1MB, 3MB, 10MB, 33MB, and 100MB, respectively. Note that an
oblivious protocol is designed to have indistinguishable behaviours
on different inputs, so the actual tuples in the relations do not
matter, except the relation sizes.

We use parameter values suggested in the security literature:
The computational security parameter 𝜅 is set to 128, the statistical
security parameter is 𝜎 = 40, and the bit-length of all annotations
is ℓ = 32. The running times are measured on a server with 48 Intel
Xeon Silver 4116 CPUs (but we only used the first CPU and ran with
a single thread in all the experiments). They are CPU times and do
not include the time for communication (which would depend on
the network bandwidth).

8.3 Experimental Results
Figure 2-6 show the results. Note that both the 𝑥-axis and𝑦-axis are
in log-scale. The effective input size is equal to the total size of the
columns involved in the query. For obvious reasons, we could not
run the garbled circuit except on the smallest dataset, so the results
on larger datasets are extrapolated. This is actually very accurate,
since the cost is proportional to the size of the circuit, which we
know exactly.

There is really no surprise in the results, as secure Yannakakis
has been proved to have costs linear in the input size. Nevertheless,
it is still mind-boggling to see the concrete numbers: On the 100M
dataset (effective data size is 5M to 8M), the garbled circuit for
Query 3 would take 300 years, sending 1 EB of data around, while
these numbers are 20 seconds and 2 GB for secure Yannakakis. The
difference on Query 9 is even more drastic.

ACKNOWLEDGMENTS
This work has been supported by HKRGC under grants 16202317,
16201318, 16201819, and 16205420, and by an Alibaba Innovative
Research (AIR) grant.

Figure 3: The time and cost of Query 10

Figure 4: The time and cost of Query 18

Figure 5: The time and cost of Query 8

Figure 6: The time and cost of Query 9

REFERENCES
[1] Gagan Aggarwal, Mayank Bawa, Prasanna Ganesan, Hector Garcia-Molina, Kr-

ishnaram Kenthapadi, Rajeev Motwani, Utkarsh Srivastava, Dilys Thomas, and
Ying Xu. 2005. Two Can Keep A Secret: A Distributed Architecture for Secure
Database Services. In Proc. Conference on Innovative Data Systems Research.

[2] Arvind Arasu, Spyros Blanas, Ken Eguro, Manas Joglekar, Raghav Kaushik, Don-
ald Kossmann, Ravishankar Ramamurthy, Prasang Upadhyaya, and Ramarathnam
Venkatesan. 2013. Secure database-as-a-service with Cipherbase. In Proc. ACM
SIGMOD International Conference on Management of Data.

[3] Arvind Arasu and Raghav Kaushik. 2014. Oblivious query processing. Proc.
International Conference on Database Theory.

[4] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On acyclic
conjunctive queries and constant delay enumeration. In International Workshop
on Computer Science Logic. Springer, 208–222.

[5] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: A Trusted Hardware based
Database with Privacy and Data Confidentiality. In SIGMOD.

[6] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. 2017. SMCQL: Secure querying for federated databases. Proceedings of
the VLDB Endowment 10, 6 (2017), 673–684.

[7] Johes Bater, Xi He, William Ehrich, Ashwin Machanavajjhala, and Jennie Rogers.
2018. Shrinkwrap: Efficient SQL query processing in differentially private data
federations. Proceedings of the VLDB Endowment 12, 3 (2018), 307–320.

[8] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. 2011. Semi-
homomorphic encryption and multiparty computation. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
169–188.

[9] David Chaum. 1984. Blind signature system. In Advances in cryptology. Springer,
153–153.

[10] Hao Chen, Kim Laine, and Peter Rindal. 2017. Fast private set intersection from
homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 1243–1255.

[11] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty
computation from somewhat homomorphic encryption. In Annual Cryptology
Conference. Springer, 643–662.

[12] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY: A frame-
work for efficient mixed-protocol secure two-party computation.. In NDSS.

[13] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211–407.

[14] David Evans, Vladimir Kolesnikov, Mike Rosulek, et al. 2018. A pragmatic intro-
duction to secure multi-party computation. Foundations and Trends® in Privacy
and Security 2, 2-3 (2018), 70–246.

[15] Oded Goldreich, S. Micali, and Avi Wigderson. 1987. How to play ANY mental
game. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing. Association for Computing Machinery, 218–229. https://doi.org/10.
1145/28395.28420

[16] Dennis Heimbigner and Dennis McLeod. 1985. A federated architecture for
information management. ACM Transactions on Information Systems (TOIS) 3, 3
(1985), 253–278.

[17] Yan Huang, David Evans, and Jonathan Katz. 2012. Private set intersection: Are
garbled circuits better than custom protocols?. In NDSS.

[18] Manas R Joglekar, Rohan Puttagunta, and Christopher Ré. 2016. AJAR: Ag-
gregations and joins over annotated relations. In Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 91–106.

[19] Noah Johnson, Joseph PNear, andDawn Song. 2018. Towards practical differential
privacy for SQL queries. Proceedings of the VLDB Endowment 11, 5 (2018), 526–
539.

[20] Simeon Krastnikov, Florian Kerschbaum, and Douglas Stebila. 2020. Efficient
Oblivious Database Joins. arXiv preprint arXiv:2003.09481 (2020).

[21] Sven Laur, Riivo Talviste, and JanWillemson. 2013. From oblivious AES to efficient
and secure database join in the multiparty setting. In International Conference on
Applied Cryptography and Network Security. Springer, 84–101.

[22] Sven Laur, Jan Willemson, and Bingsheng Zhang. 2011. Round-efficient oblivi-
ous database manipulation. In International Conference on Information Security.
Springer, 262–277.

[23] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
Oblivm: A programming framework for secure computation. In 2015 IEEE Sym-
posium on Security and Privacy. IEEE, 359–376.

[24] Payman Mohassel and Saeed Sadeghian. 2013. How to hide circuits in MPC
an efficient framework for private function evaluation. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
557–574.

[25] Rasmus Pagh and Flemming Friche Rodler. 2001. Cuckoo hashing. In European
Symposium on Algorithms. Springer, 121–133.

[26] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. 2015. Phasing:
Private set intersection using permutation-based hashing. In 24th USENIX Security
Symposium (USENIX Security 15). 515–530.

[27] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. 2019.
Efficient circuit-based psi with linear communication. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques. Springer,
122–153.

[28] Benny Pinkas, Thomas Schneider, and Michael Zohner. 2014. Faster Private Set
Intersection Based on OT Extension. In USENIX Security Symposium. 797–812.

[29] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and
Joseph M. Hellerstein. 2021. Senate: A Maliciously-Secure MPC Platform for
Collaborative Analytics. In USENIX Security Symposium.

[30] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakrish-
nan. 2011. CryptDB: protecting confidentiality with encrypted query processing.
In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Princi-
ples. 85–100.

[31] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: a secure
database using SGX. In IEEE Security & Privacy.

[32] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.
Processing analytical queries over encrypted data. In PVLDB.

[33] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei
Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party computation on
big data. In Proceedings of the Fourteenth EuroSys Conference 2019. 1–18.

[34] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB,
Vol. 81. 82–94.

[35] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th
Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162–167.

https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420

	Abstract
	1 Introduction
	1.1 Previous Work
	1.2 Our Results

	2 Related Work
	3 Join-Aggregate Queries over Annotated Relations
	3.1 Query Definition
	3.2 Yannakakis Algorithm

	4 Secure Query Evaluation
	5 Cryptographic Primitives
	5.1 Secret Sharing
	5.2 Garbled Circuits
	5.3 Private Set Intersection (PSI)
	5.4 Oblivious Extended Permutation (OEP)
	5.5 PSI with Secret-shared Payloads

	6 Secure Yannakakis
	6.1 Oblivious Projection-Aggregation
	6.2 Oblivious Semijoin
	6.3 Oblivious Join
	6.4 The Secure Yannakakis Algorithm
	6.5 Optimizations

	7 Extensions
	8 Experiments
	8.1 Queries
	8.2 Experiment Setup
	8.3 Experimental Results

	Acknowledgments
	References

