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Abstract

Researchers and practitioners from both the artificial in-
telligence and pervasive computing communities have
been paying increasing attention to the task of infer-
ring users’ high-level goals from low-level sensor read-
ings. A common assumption made by most approaches
is that a user either has a single goal in mind, or achieves
several goals sequentially. However, in real-world envi-
ronments, a user often has multiple goals that are con-
currently carried out, and a single action can serve as
a common step towards multiple goals. In this paper,
we formulate the multiple-goal recognition problem and
exemplify it in an indoor environment where an RF-
based wireless network is available. We propose a goal-
recognition algorithm based on a dynamic model set
and show how goal models evolve over time based on
pre-defined states. Experiments with real data demon-
strate that our method can accurately and efficiently rec-
ognize multiple interleaving goals in a user’s trace.

Introduction
With the recent developments in pervasive computing tech-
nology and mobile devices, it is increasingly more feasible
to infer a user’s movements and goals. Being able to per-
form goal recognition is critical to many novel applications.
A typical example is to help people who suffer from cogni-
tive disorders live safely and independently in their commu-
nities (Patterson et al. 2003). Plan-recognition systems pro-
vide the enabling technology by recognizing a user’s goals
ahead of time and offering advices in a timely manner.

In the past few years, probabilistic models based on ei-
ther hidden Markov models (Han & Veloso 1999; Bui,
Venkatesh, & West 2002; Bui 2003) and dynamic Bayesian
networks (Liao, Fox, & Kautz 2004; Yin, Chai, & Yang
2004) were proposed to bridge the gap between low-level
sensor readings and high-level goals. Issues on modeling,
learning and inference were addressed with respect to these
models. A common assumption made by these approaches
is that in a trace of sensory data recording a user’s activity, a
single goal is achieved. Slightly more sophisticated systems
can recognize several goals to be achieved sequentially, one
after another. However, in real-world environments, a user
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can work towards multiple goals within a single sequence of
actions. Actions for different goals can be interleaved and
goals can be achieved concurrently in which a single ac-
tion serves multiple goals. In these cases, many of the above
models cannot be directly applied.

For illustration, suppose that actions are directly ob-
servable. Let G = {G0, G1, G2, · · · , Gm}, A =
{A1, A2, · · · , An} denote the sets of goals and actions in
modeling a user’s behavior in an environment. Gk ∈ G de-
notes a possible goal (intention) of a user. In particular, G0 is
a goal which we specify to account for default behavior. By
default, we mean the following two situations: (1) the user
takes actions at will in the environment and thus his behav-
ior is random; (2) the user takes actions in service of some
other goals that are not modeled, either because these goals
are unknown or because they are not of interest. Ai ∈ A is
an action that the user may take. In general, a single action
can be used for multiple purposes. That is, it can be a shared
step towards multiple goals.

A1 A2 A6A3 A4 A5

A1 A2 A6A3 A4 A5

A1 A2 A6A3 A4 A5
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Type 0
Single Goal

Type 1
Sequential Goals

Type 2
Concurrent Goals

Type 3
Interleaving Goals

Action for G1 Action for G1 & G2 Action for G2

Figure 1: Types of goal composition in an action sequence

Figure 1 illustrates four representative types of goal com-
position in a single action sequence < A1, A2, · · · , A7 >.
An arrow denotes a terminating action of a goal. As shown
in the figure, type 0 is the most common case where a sin-
gle goal G1 is achieved by the whole action sequence. Two
goals are contained in each of the other three types. Type
1 represents a sequential case, where actions for G2 start
when G1 reaches its final step A3. In type 2, G1 and G2 are
pursued concurrently and they share the first five actions.
G1 is achieved by two actions, A6A7, ahead of G2. Type 3
shows another special case where goal transitions between
G1 and G2 happen frequently. More complicated types of
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multiple-goal composition can be obtained from combina-
tions of the above four types. A multiple-goal recognition
problem is thus to infer one or more of the user’s goals from
an ongoing action sequence, and to associate actions to each
recognized goal. It is ideal for a multiple-goal recognition
system to recognize type 3 of the case above.

Unfortunately, many previous approaches cannot handle
type-3 multiple goals. In this paper, we propose a novel al-
gorithm to handle this situation, by inferring a user’s multi-
ple high-level goals from low-level sensory data. In our ap-
proach, we establish a dynamic model set in which models
are instantiated and terminated dynamically. Each model is
a finite state machine and functions as a goal recognizer.
Multiple-goal behavior is modelled as transitions among
some pre-defined states of these models. By distinguishing
the state of a model, we can infer whether one of a user’s
goals is present or not. In our method, we also address the
issue of goal abandonment where a user gives up his goals.

The main contribution of this paper is that we identify
and solve all four types of multiple-goal recognition prob-
lem from low-level signals received from sensors in a wire-
less environment. A novel method is proposed for inferring
a user’s multiple goals within a single observed trace. In ad-
dition, we demonstrate the effectiveness and efficiency of
our method through empirical studies using real data that
we have collected in such an environment.

Related Work
Recognizing a user’s high-level behavior has traditionally
been the focus of plan recognition in the area of artificial in-
telligence (Kautz & Allen 1986; Charniak & Goldman 1993;
Goldman, Geib, & Miller 1999; Blaylock & Allen 2003).
However, most of the work was restricted to high-level infer-
ence, whereas the challenge of dealing with low-level sen-
sory data has not been addressed.

In recent years, there has been an increasing interest in in-
ferring a user’s activities through integrating both high-level
behavior and low-level sensor modeling. (Bui, Venkatesh, &
West 2002; Bui 2003) introduced abstract hidden Markov
models to represent the hierarchical structure of a person’s
activity in an indoor environment and predict his goal from
camera data. In (Liao, Fox, & Kautz 2004), the authors ap-
plied dynamic Bayesian networks to estimate a person’s lo-
cations and transportation modes based on logs of GPS mea-
surements. (Yin, Chai, & Yang 2004) proposed a two-level
architecture of Bayesian models to infer a user’s goal in a
complex indoor wireless environment.

For all these approaches, it is assumed that a user has a
single goal (e.g., “going to the work place”) in action exe-
cution or switch to a next goal (e.g., “returning home”) only
when the previous one is achieved. Thus, while these mod-
els can handle types 0 and 1 in Figure 1, they are inherently
incapable of modeling a user’s multiple, concurrent or inter-
leaving goals (type 2 or 3). This is because in these mod-
els, goals “compete” with each other to explain actions. In
other words, although these Bayesian methods can exploit
the phenomenon of “explaining away”, they cannot distin-
guish between co-existence and non-existence of multiple
goals. For example, these models cannot distinguish the case

where evidence for discriminating two goals is insufficient
(e.g., each goal has a posterior probability of 1/2), from the
case where the two goals are actually being pursued concur-
rently. In our work, we aim to provide a general framework
in which both single-goal and multiple-goal recognition can
be modeled. Thus, we have achieved a major advance over
previous work.

In (Han & Veloso 1999), the authors presented an HMM-
based algorithm that performs automated robot-behavior
recognition in robotic soccer. In their work, an augmented
version of HMM called behavior HMM (BHMM) is intro-
duced to represent behavior of a robot in a soccer game. A
BHMM can recognize a single execution of a behavior, pro-
vided it is instantiated around the time when the real be-
havior starts. BHMMs are thus repeatedly created at regular
intervals to meet the starting time. In this scheme, although
the single-goal assumption in action execution is relaxed for
modeling types 0∼2 in Figure 1, their algorithm is still in-
sufficient to handle the cases where goals are achieved in an
interleaving or more complex manner.

Our method, inspired by the BHMM approach in building
and applying recognition models dynamically, goes beyond
their work . We introduce a suspending state that a model
can enter. We also provide a novel mechanism to manage
state transitions for these models. As a result, all four types
of multiple-goal composition can be handled. Moreover, in
our approach, goal-recognition models are created econom-
ically (only when they are needed). Thus, our algorithm im-
proves both the capability and efficiency in inference.

Overview of a Wireless Environment

Environmnt Settting

Entrance 1

Entrance 2

Entrance 3

Office

Room1

Room2

Areas: Office, Room1  and  Room2
Entrances: Entrance 1 ~ 3
HWs: HallWay 1 ~ 7
AP’s: Access  points  as   indicated 
          by double concrete circles

HW3

HW6

HW4

HW7

HW1

HW2

HW5

Figure 2: Layout of an office area

A user with a mobile device performs actions, such as
Walk-in-HW2, Enter-Office and Print, in the environment
(Figure 2). The mobile device periodically (e.g. per second)
records strength measurements of signals propagated from
the APs. For example, o =< 48, 83, 57 > denotes an ob-
servation consisting of strength values of signals from the
three APs. We define a user’s behavior as a sequence of ac-
tions taken to achieve high-level goals (e.g., “Seminar-in-
Room2” and “Exit-through-Entrance1”). A user’s behavior
trace is represented as a sequence of signal-strength mea-
surements < o1, o2, · · · , ot > recording his movements.

Proposed Method
In this section, we first briefly introduce the two-level ar-
chitecture that we adopt to model a user’s multiple-goal be-
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havior in a wireless environment. Then, we give a detailed
description of our proposed recognition method.

Two-level Architecture in Behavior Modeling
The architecture, similar to that used in (Yin, Chai, & Yang
2004), is shown in Figure 3. It consists of two levels. The
lower level starts from the sensor layer to the action layer. A
dynamic Bayesian network (Murphy 2002) is applied to esti-
mate a user’s actions from traces of signal-strength measure-
ments. An estimated action sequence is then passed from
the lower level to the upper level. On the upper level is a
set of goal models that are created and terminated dynami-
cally. Each model is a finite state machine that corresponds
to one of a user’s goal. We model a user’s behavior as tran-
sitions in these finite state machines rather than as compe-
titions among them. Taking the action sequence as input,
each model reports whether a goal is present or not. By this
means, we enable multiple-goal recognition. The advantage
of this two-level representation is that it treats uncertainty
in low-level signal dynamics and uncertainty in high-level
user-behavior dynamics separately.
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Figure 3: Multiple-goal recognition architecture

Since our main contributions are the design and imple-
mentation of the upper level, we omit detailed discussion of
the lower level in this paper. Interested readers please refer
to (Yin, Chai, & Yang 2004).

Goal Recognition with a Dynamic Model Set
Definitions For each goal Gk ∈ G, we define a goal
model Mk as a triple < πk, Qk, Tk >. Here, πk = P (Gk)
and Qk = {P (Ai|Gk), Ai ∈ A} are the goal and action
priors. Tk = {P (Ai|Aj , Gk), Ai,j ∈ A)} specifies the
action-transition probabilities. Qk(Ai) , P (Ai|Gk), and
Tk(Aj , Ai) , P (Ai|Aj , Gk). We call G0 a default goal and
others (G1 ∼ Gm) special goals. Correspondingly, M0 is a
default-goal model and others (M1 ∼ Mm) are special-goal
models. Intuitively, we allow a default model to capture all
background behavior of the user and keep this model run-
ning along the user trace. When the model of a goal Gk,
k 6= 0, has a higher likelihood score than its corresponding
default model, we can infer that this goal is currently being
pursued.

To track an agent’s movement, we keep a model set M
defined as a set of models {M t

k, 0 ≤ k ≤ m}, where
M t

k, k 6= 0 denotes a goal model for Gk created at time

t. In addition, we define S = {sr, sp, st} as the set of states
that each goal model can be in, namely:
• Running State (sr) – It indicates that a model is at work

and its recognizing goal is actively being pursued. It is
also the state which a new model enters after being ini-
tialized. Actions processed by a model when it is in state
sr are said to be accepted by the model. We use Acc(M)
to denote the latest accepted action of the model M ; this
variable serves as a memory to remember the last action
taken towards a goal when the goal is running, or before
a goal is temporarily suspended.

• Suspending State (sp) – The state in which a model stops
responding to input actions while the model still remains
in M. These input actions are said to be not accepted by
the model and we use Nms(M) to denote the number of
actions that are not accepted by the model M since its
latest suspension. A model enters sp when input actions
do not meet the model’s expectations and the model leaves
sp under certain conditions. As an example, a professor
might stop working in office temporarily and go to have a
cup of coffee for a while, and then resuming his work.

• Terminal State (st) – A model is removed from M upon
entering st, which denotes a goal’s completion. We define
Âk as a set of actions with which goal Gk can terminate.
Âk can be obtained from the history of a user’s action
execution for Gk in the training data.
The state diagram is shown in Figure 4. Transitions be-

tween states are specified below.

Sr St

(4)

(2)

(4)(3) Sp

(1)

(2)

(3)

Figure 4: State diagram: (1) instantiate; (2) evolve; (3) sus-
pend; (4) terminate.

Model Instantiation Goal models are instantiated when
the model set M is empty or all the special-goal models
in M are in state sp. Suppose that the estimated action at
the current time t is At. To determine whether a special-
goal model Mk (k 6= 0) should be instantiated or not, its
likelihood score πkQk(At) is compared with that of the de-
fault model π0Q0(At). If πkQk(At) ≥ π0Q0(At) and no
instance of Mk for Gk is in M, a new model M t

k is instanti-
ated. Otherwise, it is not instantiated. Upon instantiation, its
likelihood at time t is initialized as Lt(M

t
k) = πkQk(At)

and its state St(M
t
k) = sr. By definition, Acc(M t

k) = At.
M t

k is subsequently added into M. If at least one special-goal
model is created at time t, a default-goal model M t

0 is also
instantiated to track a user’s actions. Lt(M

t
0) = π0Q0(At)

and M t
0 are also added into M. The purpose of instantiat-

ing a default-goal model along with others is to distinguish
a user’s special-goal–oriented behavior from his default be-
havior, where different default behaviors have different like-
lihood depending on when it is started. Once instantiated,
M t

0 stays in state sr until terminated.
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Model Update Let M t0
k (k 6= 0) denote a special-goal

model initialized at time t0. M t0
0 is thus the default-goal

model also instantiated at t0. Let At and At−1 be the ac-
tions at current time t and previous time t − 1, respectively.
Models are updated iff At 6= At−1. Suppose that At 6= At−1

in the following discussion. Updating M t0
k includes updat-

ing its state, likelihood and latest accepted action. A detailed
description is given in Algorithm 1 and we explain it through
the two cases below. M t0

0 remains in state sr and its likeli-
hood is updated as follows:

Lt(M
t0
0 ) = Lt−1(M

t0
0 ) × T0(At−1, At). (1)

Algorithm 1 Goal-Model Update (of a special model M t0
k )

Input: L
k,t0
t−1

, Lt−1(M
t0
k ) – the likelihood of M

t0
k at time t− 1,

Acck,t0 , Acc(M t0
k ) – the latest accepted action;

Output: L
k,t0
t , S

k,t0
t , Acck,t0 ;

Procedure:
1: Update the model state:

if Tk(Acck,t0 , At) < T0(At−1, At) then
S

k,t0
t ← sp; // enter the suspending state

else
if At ∈ Âk then

S
k,t0
t ← st; // enter the terminal state

else
S

k,t0
t ← sr; // enter the running state

end if
end if

2: Update the model likelihood:

L
k,t0
t =

{
L

k,t0
t−1
× Tk(Acck,t0 , At) if S

k,t0
t ∈ {sr, st},

L
k,t0
t−1
× T0(At−1, At) otherwise;

(2)

3: Update the latest accepted action:

Acc
k,t0 =

{
At if S

k,t0
t ∈ {sr, st},

Acck,t0 otherwise.
(3)

Case 1: Model Suspension As given in Algorithm 1,
model M t0

k (k 6= 0) is suspended if the condition:

Tk(Acck,t0 , At) < T0(At−1, At), (4)

holds. Here, goal-oriented behavior (Tk) and default behav-
ior (T0) are compared. This condition means that following
the latest accepted action Acck,t0 and accepting the current
action At lowers the likelihood of this special-goal model,
while the likelihood of the default-goal model increases. In
other words, a user less probably continues his plan for goal
Gk than exhibits default behavior by taking action At. The
criterion of Equation 4 is reasonable in that when a user fol-
lows his plan, the possibility of his goal-oriented behavior
Gk increases. On the other hand, when he deviates from his
plan, default behavior becomes more likely instead.

Once suspended, M t0
k stays in sp and its likelihood is up-

dated by Equation 2 to keep pace with the update of M t0
0 in

Equation 1. The idea is that by suspending M t0
k , we main-

tain the distance between the likelihood of M t0
k and that of

M t0
0 , rather than change it. In addition, its latest accepted

action Acck,t0 remains the same, as given in Equation 3.

Case 2: Model Evolvement and Termination When the
condition of Equation 4 fails, At is more likely an action
towards goal Gk than an action of default behavior. Accord-
ingly, the model likelihood and the last accepted action are
updated by Equations 2 and 3. If At ∈ Âk, the terminating-
action set of Gk, model M t0

k enters state st. Otherwise, it
enters state sr. When the model enters st, goal Gk is re-
ported to have been achieved. Gk can also be predicted ear-
lier when the model is still in sr, depending on different ap-
plications. Furthermore, we can obtain those actions for Gk

in the current trace by keeping track of Acck,t0 update. Upon
termination, M t0

k is removed from the model set M.

Complete Multi-Goal Recognition Algorithm

Algorithm 2 Multi-Goal Recognition with a Dynamic Model Set
Procedure:
1: Initially, t = 0 and M = {};
2: while a user’s activity is in progress do
3: Estimate the current action At from the signal-strength mea-

surements with the lower action model in Figure 3;
4: if At == At−1 then
5: Continue;
6: end if
7: for each model M

t0
k ∈ M (0 ≤ k ≤ m, 0 ≤ t0 < t) do

8: Update the model by Equation 1 (if k = 0) or Algorithm
1 (if k 6= 0);

9: if St(M
t0
k ) == st then

10: Report Gk as a recognized goal which starts at t0;
11: M← M− {M t0

k };
12: end if
13: if St(M

t0
k ) == sp and Nms(M

t0
k ) > Nm then

14: M← M−{M t0
k }; // timeout, discard M

t0
k from M

15: end if
16: end for
17: for 0 ≤ t0 < t do
18: if @k ∈ {1, . . . , m} such that M

t0
k ∈ M then

19: M← M−{M t0
0
}; // remove the default-goal model

20: end if
21: end for
22: if M = {} or St(M

t0
k ) = sp, ∀M t0

k ∈ M, 1 ≤ k ≤ m
then

23: Instantiate a subset of models Mt = {M t
k};

24: M← M ∪Mt;
25: end if
26: end while

The pseudo code of the complete algorithm is presented
in Algorithm 2. To recognize goal abandonment, we adopt
a timeout threshold Nm (Line 13). Nm specifies the maxi-
mum number of actions that a goal model is allowed to skip
in state sp. Nm can be given by domain knowledge. This
threshold is used under the assumption that a user will not
delay for more than a certain number of actions to achieve
a goal. If Nms(M

t0
k ) > Nm, the user is assumed to have

abandoned Gk which starts at t0 and the model can be thus
removed from M. The default-goal model M t0

0 is terminated
and removed from M if all the special-goal models with
k 6= 0 instantiated at the same time (i.e., time t0) are ter-
minated (Lines 18∼20).
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Experimental Results
We conducted experiments in the office area shown in Fig-
ure 2 to evaluate our proposed method. Eight special goals of
a professor’s activity, such as “Seminar-in-Room1”, “Exit-
through-Entrance2” and “Return-to-Office”, are modeled.
In addition, a default goal G0 is added to account for his
default behavior. We collected 850 single-goal traces using
the device driver and API we have developed. We synthe-
sized multiple-goal traces from the single-goal ones by sim-
ulating a professor’s activities in this environment: Segments
were pieced together to generate connective traces contain-
ing multiple goals. In total, we obtained 750 two-goal traces
and 300 three-goal traces that are of goal types 1 to 3.

We compare our algorithm, referred to as MG-
Recognizer, with the N-gram-based recognition algorithm
(Yin, Chai, & Yang 2004), referred to as SG-Recognizer
and the BHMM-based recognition algorithm (Han & Veloso
1999), referred to as BHMM-Recognizer. SG-Recognizer
uses an N-gram model to infer the most probable goal of a
user from his action sequence. The N-gram model is equiv-
alent to a set of m goal models that are defined in our work.
Here, m is the total number of goals and m = 9 in our ex-
periments. Since this algorithm was designed also in a wire-
less domain, we selected it as a representative of single-goal
recognition algorithms. In contrast, the BHMM-Recognizer
is capable of recognizing multiple goals in a single trace by
instantiating multiple copies of models at different times,
where models are implemented as HMMs that keep running
until terminated. Each model reports whether its recognizing
goal is present or not. In our experiments, goal-instantiation
is activated once every input action. For fairness, all recog-
nizers receive input action sequences from the same low-
level action model in Figure 3. Two criteria were used for
evaluation:

1. Recognition Accuracy: It measures how accurate an algo-
rithm is at recognizing the set of goals in a user’s trace,
where a trace contains a single or multiple goals.

2. Inference Efficiency: Since the three algorithms perform
inference using a different number of goal models and
each model is computationally cheap, efficiency is mea-
sured in terms of the number of models instantiated.

Finally, we used three-fold cross validation. Both action and
goal models were trained from the training traces.

A Recognition Example
We use an example to illustrate how these three algorithms
perform recognition. In the area shown in Figure 2, a pro-
fessor started from his office and walked through hallways
(HW1, HW3 and HW4) to get some printed material from
the printer in Room2. Then, he turned back (HW4) and ex-
ited the office area through Entrance2 (through HW6 and
HW7). The whole action trace is <Walk-in-HW1, Walk-
in-HW3, Walk-in-HW4, Print, Walk-in-HW4, Walk-in-HW6,
Walk-in-HW7> and this single trace contains two goals,
G1=“Print-in-Room2” and G2=“Exit-through-Entrance2”.
G1 and G2 shared the first two actions (Walk-in-HW1 and
Walk-in-HW3). After these two actions, G1 and G2 were

achieved separately (actions Walk-in-HW4 and Print for G1;
actions Walk-in-HW6 and Walk-in-HW7 for G2).

Figure 5 shows the recognition processes of the three
algorithms. For illustration, only a set of three goals
{G0, G1, G2} was considered. Thus, in each algorithm,
three goal models (Mk for Gk, k = 0, 1, 2) were instanti-
ated at the starting time. The performance of SG-Recognizer
is shown in Figure 5(a). As we can see, based on the single-
goal assumption, each model competed with one another to
explain the whole action trace. As a result, SG-Recognizer
missed both G1 and G2 and recognized the whole trace as
the default goal G0.

In contrast, BHMM-Recognizer and MG-Recognizer
avoid competition among goal models by assuming that
multiple goals can coexist. For illustration, in Figure 5(b),
we normalized the likelihood of M1 (M2) with that of M0.
For M1 at time t, the normalized likelihood is computed as:
L̂t(M1) = Lt(M1)

Lt(M1)+Lt(M0)
. Therefore, when M1(M2) ter-

minates, if its likelihood value is greater than 1/2, we say
that G1(G2) rather than G0 is present. As shown in the up-
per graph of Figure 5(b), BHMM-Recognizer was capable
of recognizing G1 at its terminating action Print. However,
it missed G2 at the action Walk-in-HW7 and reported G0

instead, as shown in the lower graph of the figure. MG-
Recognizer caught both goals through distinguishing the
models’ states. For example, as shown in the lower graph of
Figure 5(c), M2 was suspended when the recognizer judged
that the user had deviated from his plan for G2 at the ac-
tion Walk-in-HW4, and M2 was resumed later at the action
Walk-in-HW6. The accompanied model-state sequences are
also shown in the figure.

Figure 6 compares the three algorithms in terms of the
number of goal models instantiated over time. Again, for
simplicity, only the three goals (G0, G1 and G2) were in-
volved. SG-Recognizer maintained a set of three models dur-
ing the whole recognition process. Since BHMM-Recognizer
instantiated a set of models every action, the number in-
creased linearly on the whole. In contrast, MG-Recognizer
was much more efficient, requiring no more than four mod-
els. This is because the suspending state enlarges the ex-
pression power of a goal model. Also, goal models are in-
stantiated selectively instead of collectively, compared with
BHMM-Recognizer.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

SG−Recognizer
BHMM−Recognizer
MG−Recognizer

Walk−in−HW1 Walk−in−HW3 Walk−in−HW4 Print Walk−in−HW4 Walk−in−HW6 Walk−in−HW7 

(3 + 1) (2 + 2) (3 + 1) (3 + 1)

(2 + 1)(3 + 0)(3 + 0)

the number of models in Sr 
the number of models in Sp 

Figure 6: Comparison of the number of goal models

Overall Evaluation
Finally, recognition performance was measured over a total
of 850 single-goal traces and 1050 multiple-goal traces us-
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Figure 5: Comparison of the three algorithms in recognizing G1 and G2: (a) SG-Recognizer; (b) BHMM-Recognizer (M1 for
G1 and M2 for G2); (c) MG-Recognizer (M1 for G1 and M2 for G2), together with model-state sequences.

ing a three-fold cross validation. The whole set of nine goals
(eight special goals and one default goal that start at time
zero) was considered.

Table 1 shows the comparison in recognition accuracy for
both single and multiple-goal recognition. MG-Recognizer
performs the best in multiple-goal recognition: 12.3%
higher than BHMM-Recognizer and 66.9% higher than SG-
Recognizer. In single-goal recognition, MG-Recognizer is
only 3.2% lower than SG-Recognizer. Thus, our method of-
fers a solution for general goal recognition.

Table 2 compares the average number of goal models in-
volved during recognition. As we can see, MG-Recognizer
is much more economical than BHMM-Recognizer in both
types of recognition: On average, MG-Recognizer maintains
only about 6.6 running models (in state sr) and about 4.3
suspending models (in state sp). Furthermore, compared
with SG-Recognizer, which requires a minimum of nine
models, MG-Recognizer incurs only slightly more overhead
and requires even less computation if we considered the
number of active goals only (in state sr).

Recognizer SG- BHMM- MG-
Single-Goal 97.8% 95.5% 94.6%

Multiple-Goal 24.5% 79.1% 91.4%

Table 1: Comparison of recognition accuracy

Recognizer SG- BHMM- MG-
Single-Goal 9 20.7 6.5 + 3.7

Multiple-Goal 9 28.7 6.6 + 4.8

Table 2: Comparison of recognition efficiency

Conclusions
In this paper, we proposed a solution to the problem of in-
ferring a user’s high-level goals from low-level sensory data.
We first formulated the multiple-goal recognition problem in
an indoor wireless environment and then proposed a recog-
nition algorithm using a dynamic model set. Experiments
with real data demonstrated its accuracy in recognition and
its efficiency in inference. In the future, we plan to extend

our work in several directions. One extension is to general-
ize transitions between model states with probability mea-
sures. In this paper, we have assumed a deterministic tran-
sitional framework. However, we expect that probabilistic
transitions will improve the robustness of the algorithm.
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