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Abstract

Association rules are traditionally designed to
capture statistical relationship among itemsets in a given
database. To additionally capture the quantitative
association knowledge, F.Korn et al recently proposed a
paradigm named Ratio Rules [4] for quantifiable data
mining. However, their approach is mainly based on
Principle Component Analysis (PCA) and as a result, it
cannot guarantee that the ratio coefficient is non-negative.
This may lead to serious problems in the rules’
application. In this paper, we propose a new method,
called Principal Sparse Non-Negative Matrix Factoriza-
tion (PSNMF), for learning the associations between
itemsets in the form of Ratio Rules. In addition, we
provide a support measurement to weigh the importance
of each rule for the entire dataset.

1. Introduction

Association rules are one of the major representations
in representing the knowledge discovered from large
databases. The problem of association rule mining (ARM)
in large transactional databases was introduced in [1, 3],
Its basic idea is to discover important and interesting
associations among the data items. The form of such
association is as following:

{ , } (80%)bread milk butter=>
To find association rules, most prevalent approaches
assume the transactions only carry Boolean information
and ignore the valuable knowledge inherent in the
quantities of the items. In fact, considering that the
quantities of the items normally contain valuable
information for us, it is necessary to provide a definition
of quantitative association rules when the datasets contain
quantitative attributes. Several efficient algorithms for
mining quantitative association rules have been proposed
in the past [2, 7]. A notable algorithm is the work [4],
where they provided a stronger set of rules as Ratio Rules.
A rule under this framework is expressed in the following
form:

: : : :
( , , )
bread milk butter a b c

a b c is arbitrary numerical values

=

This rule states that for each a amount spent on bread, a
customer normally spends b amount on milk and c amount
on butter.

Principal Component Analysis (PCA) is often used to
discover the eigen-vectors of a dataset. Ratio Rules [4]
can represent the quantitative associations between items
as the principal eigen-vectors, where the values a, b and c
in the example above correspond to the projections of the
eigenvector. Because the element of eigen-vector can be
either positive or negative, sometime the ratio coefficient
of Ratio Rules may contain negative value, such as

: : 1: -2 : -5Shoe Coat Hat =
Obviously, such rule loses the intuitive appeal of
associations between items, because a customer’s
spending should always be positive.

Our method amounts to a novel application of non-
negative matrix factorization (NMF) [5]. However, we
cannot directly apply NMF for our purpose, because it is
still difficult to explain that these latent components
represent the latent association between items in a
quantifiable dataset. We need to provide a bridge to bring
NMF closer to association rules.

In this work, we propose a novel method called
Principal Sparse Non-Negative Matrix Factorization
(PSNMF), which adds the sparsity constraint as well as
the non-negativity constraint in the standard NMF[5].

The rest of the paper is organized as follows: Section
2 describes the problem and the intuition behind the Ratio
Rules. Section 3 introduces our new algorithm (PSNMF).
Section 4 presents the experimental results. Section 5
concludes the paper. The convergence of PSNMF learning
procedure is provided in Appendix.

2. Problem Definition

The problem that we tackle is as follows. Given a
N M× matrixV (e.g., market basket databases), the entity

ijv gives the amount spent by customers on the product.

The goal is to find all Ratio Rules of the form:
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(a) A data matrix with 2-dimension (b) Ratio Rules identified by PCA c)Ratio Rules identified by PSNMF

Fig 1. A data matrix and latent associations discovered by PCA and PSNMF

( )1 2 3: : : ... : 0M iv v v v v ≥
The above form means that customers who buys the items
will spend 1v , 2v … respectively on each itemset.

Fig1.(a) lists distribution of the matrix V which is
organized with N customers and M ( 2)M = products
Here we assume that the dataset is consisted with two
clusters. Our goal is to capture the associations between
items. We list two Ratio Rules discovered by PCA[4] in
Fig.1 (b), where one contains negative values:

: -0.77 : 0.64bread butter =
Obviously, the negative association between items
(“bread” and “butter”) does not make sense. Furthermore,
it is obvious that the Ratio Rules deviate with the latent
associations behind the distribution of these points.

In fact, from Fig 1.(a), we find that the latent
associations are not mutually orthogonal, while the
method by PCA imposes the orthogonality constraint on
these ratio rules. Therefore, Ratio Rules based on PCA
cannot truly reflect the latent associations among the items
correctly. Compared to Fig.1 (b), Fig 1(c) illustrates the
Ratio Rules captured by our proposed PSNMF.
Surprisingly, each rule could be treated as an association
in the two clusters respectively.

3. Principal Sparse Non-Negative Matrix
Factorization (PSNMF)

Given a M N× non-negative matrixV , denote a set
of P M� basis components by a M P× matrixW , where
each transaction (column vector) can be represented as a
linear combination of the basis components using the
approximate factorization:

(1)V WH≈
where H is a P N× coefficients matrix.

3.1 Non-negative Matrix Factorization(NMF)

Because the entries of W and H calculated by PCA

may contain negative values, NMF [5] is proposed as a
procedure for matrix factorization which imposes non-
negative instead of orthogonal constraint, and NMF uses
the I-divergence of V fromY , which is defined as

,

( || ) ( log ) (2)ij
ij ij ij

i j ij

v
D V Y v v y

y
= − +�

As the measurement of fitness for factorizing V into
[ ]ijWH Y Y=� , a NMF factorization is defined as

,
min ( ) . 0, 1 (3)ijW H

i

D V WH s t W H w j≥ = ∀�

The above optimization can be done by using multipli-
cative update rules [5].

3.2 Sparse Non-negative Matrix Factorization
(SNMF)

Although NMF is successful in Matrix Factorization,
the NMF model does not impose the sparse constraints.
Therefore, it can hardly yield a factorization, which
reveals local sparse features in the dataV . Related sparse
coding is proposed in the work of [6] for matrix
factorization.

Inspired by the original NMF and sparse coding, the
aim of our work is to propose Sparse Non-negative Matrix
Factorization (SNMF), which imposes the sparse and non-
negative constraint. Therefore, we put forward the
following constrained divergence as objective function:

( )
1

,

1 2 3

( || ) ( log ) + (4)

, , ,..., .

ij
ij ij ij j

i j jij

T

j j j j pj

v
D V Y v v y l

y

l h h h h denotes the column of H

λ= − +

=

� �

where [ ]ijWH Y Y=� , and λ obtained by experience was

assumed a positive constant. As the measurement of
fitness for factorizing V into [ ]ijWH Y Y=� , a SNMF

factorization is defined as:

,

1

min ( ) (5)

. , : 0 0, 1
W H

ij ij i

D V WH

s t i j W H and i w∀ ≥ ≥ ∀ =
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Notice that we have chosen to measure sparseness by a
linear activation penalty (i.e. minimum the 1-norm of the
column of H ). A Sparse solution to the above constrained
minimization can be found by the following update rules:

( ) ( ) (6)ik
kl kl il iki

i ik klk

w
h h v w

w h
λ= +� �

�

(7)lj
kl kl kj ljj

j kl ljl

h
w w v h

w h
= � �

�
To make the solution unique, we further require that the 1-
normal of the column vector in matrix W is one. In
addition, matrix H needs to be adjusted accordingly.

(8)kl kl klk
w w w= �

(9)kl kl klk
h h w= �

It is proved that the objective function is non-increasing
under the above iterative updating rules, and the
convergence of the iteration is guaranteed (in Appendix).

3.3 Principal SNMF

When the dataset V is decomposed with W and H ,
each column value of H represents the corresponding
projection on the basis space W . As a whole, the sum of
every row vector of H represents the importance of
corresponding base. Therefore, we define a support
measurement after normalizing every column of H :

(10)kl kl klk
h h h= �

Definition. For every rule (column vector) of W , we
define a support measurement:

( ) (11)i ij ij
j ij

support w h h=� �

Consequently, we can measure the importance of each
rule for the entire dataset by their support values. The
more value of support implies the more importance of
such rule for the whole dataset.

In order to select the principal k rules as Ratio Rules,
firstly, we rank the whole rules in descending by the
support value. And then, retain the first k principal rules
as Ratio Rules because they are more important than
others. About the selection of k value, a simple method is
taken such as:

1

1

( )
min (12)

( )

k

ii
Mk

ii

support w
threshold

support w
=

=

� �
� �>
� �
� �

�
�

From above (12), Ratio Rules are obtained effectively
according that the sum of k support values of rules cover
threshold (i.e.90%) of the grand total support values.

4. Experiments

Synthetic dataset:
We have applied both the PSNMF and the PCA to a

dataset that consists of two clusters, which contains 25

Gaussian distribution points on x-y plain (generated with
mu=[3;5], sigma=[1,1.2;1.2,2]) and 50 points on y-z plain.
(Fig2.)(Generated with mu=[3;5], sigma=[2,1.6;1.6,2]).
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Fig 2.Dataset with two clusters

Table 1. Ratio Rules based on PSNMF and PCA
PSNMF 1RR

2RR 3RR

(X) 0.000 0.696 0.020
(Y) 0.493 0.304 0.980
(Z) 0.507 0.000 0.000

( )iSum w 49.88 21.64 3.488
( )iSupport w 0.665 0.289 0.046

(a)Based on PSNMF (b) Based on PCA

Table 1.(a) lists all the rules and corresponding support
values. After ranking such rules, Ratio Rules are obtained
since 1 2( ) ( ) = 0.9535>90%support w support w+ .

1

2

:: : : 0 : 0.493 : 0.507 (0.6650)

:: : : 0.696 : 0.304 : 0 (0.2885)

rule X Y Z

rule X Y Z

=>
=>

For example, 2/3 transactions (the cluster with distribution
on y-z plain) are mostly depended on 1rule and others on

2rule . Therefore, the corresponding support value (0.665)
of 1rule does not contradict with intuition. Otherwise,
Table 1.(b) lists the Ratio Rules by PCA which is difficult
to explain the negative association obviously.

Real Dataset: NBA ( 459 11× )

This dataset comes from basketball statistics
obtained from the 97-98 season, including minutes played,
Point per Game, Assist per Game, etc. The reason why we
select this dataset is that it can give a intuitive meaning of
such latent associations. Table 2 presents the first three
Ratio Rules ( 1RR , 2RR , 3RR ) by the PSNMF. Based on a
general knowledge of basketball, we conjecture the 1RR

represent the agility of a player, which gives the ratio of
Assists per Game and Steals, is 0.206:0.220 1:1≈ . It means
that the average player who possess one time of assist per
game will be also steal the ball one time, and so does

2 (0.117 : 0.263 1: 2.25)RR ≈ . In this case, traditional method
cannot give such information behind the dataset.

PCA 1RR
2RR

(X) -0.52 0.72

(Y) -0.77 -0.15

(Z) -0.38 -0.68
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Table 2. Ratio Rules by PSNMF from NBA
field

1RR 2RR 3RR

Games 0.450
Minute 0.013
Points Per Game 0.010
Rebound Per
Game

0.117

Assists per Game 0.206
Steals 0.220
Fouls 0.263
3Points

5. Conclusion

In this work, we proposed Principal Sparse Non-
Negative Matrix Factorization (PSNMF) for learning
sparse non-negative components in matrix factorization. It
aims to learn latent components which are called Ratio
Rules. Experimental results illustrate that our Ratio Rules
are more suited for representing associations between
items than that by PCA.
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Appendix

To prove the convergence of the leaning algorithm
(6)-(7), an auxiliary function ( , ')G H Z is given for
objective function ( )L Z with the properties that

( , ') ( ))G Z Z L Z≥ and ( , ) ( )G Z Z L Z= ,we will show that the
multiplicative update rule corresponds to setting ,at each

iteration ,the new state vector to the values that minimize
the auxiliary function:

( 1) arg min ( , ) (13)t t
zZ G Z Z+ =

Then the objective function ( )L Z is non-increasing when
Z is updated using (13), because of

( 1) ( 1)( ) ( , ) ( , ) ( )t t t t t tL Z G Z Z G Z Z L Z+ +≤ ≤ = .
Updating H : with W fixed, H is updated by
minimizing ( ) ( )L H D V WH= . An auxiliary function is

constructed for ( )L H as:

( )
' '

' '
, , ,

, , ,

( , ') log log log

+

ik kj ik kj
ij ij ij ik kj

i j i j k ik kj ik kjk k

ij ij ij
i j i j i j

w h w h
G H H v v v w h

w h w h

y v hλ

� �
= − −� �

� �
� �

− +

� �
� �

� � �

Since it is easy to verify
1

,
j ij

j i j

l h=� � , therefore it is not

difficult to testify ( , ) ( )G H H L H= . The following proves
( , ') ( )G H H L H≥ . Because log( )ik kjk

w h� is a convex

function, the following holds for all i ,j and 1ijkk
µ =� :

'

'

' '

' '

log( ) ( log ) ( )

thus

log( ) ( log log

ik kj ik kj
ik kj ijk ijkk k

ijk ik kjk

ik kj ik kj
ik kj ik kjk k

ik kj ik kjk k

w h w h
w h where

w h

w h w h
w h w h

w h w h

µ µ
µ

− ≤ − =

� �
− ≤ − −� �

� �
� �

� �
�

� �
� �

Thus, ( , ') ( )G H H L H≥ .
To minimize ( )L H , we update H by:

( 1) arg min ( , ) (14)t t
HH G H H+ =

for all kl
''

. .'

( , ) 1
- 0ik kj

i l i ki i
kl ik kj klk

w hG H H
v b

h w h h
λ∂ = + + =

∂ � �
�

Solving for H , this gives:

( ) ( )'
'

ik
kl kl il iki

i ik klk

w
h h v w

w h
λ= +� �

�
which is the desired updated H .
Updating W : with H fixed, W is updated by
minimizing ( ) ( )L W D V WH= . The auxiliary function is

( )
' '

' '
, , ,

, , ,

( , ') log log log

+

ik ik

ik ik

kj kj
ij ij ij ik kj

i j i j k kj kjk k

ij ij ij
i j i j i j

w h w h
G W W v v v w h

w h w h

y v hλ

� �
= − −� �

� �
� �

− +

� �
� �

� � �

It is easily to prove ( , ) ( )G W W L W= and ( , ') ( )G W W L W≥
likewise. we can get:

'
'

lj
kl kl kj ljj

j kl ljk

h
w w v h

w h
= � �

�
This completes the proof.

Proceedings of the Fourth IEEE International Conference on Data Mining (ICDM’04) 
0-7695-2142-8/04 $ 20.00 IEEE 


