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Introduction

The highly infectious disease COVID-19 has become a pan-
demic with profound impacts on our life and economy [1]. 
To effectively curb its spread, infection containment is the 
first-priority measure. In many countries or regions, people who 
recently have traveled from high-risk areas or have had physical 
contact with confirmed cases are required to be quarantined 
for the virus incubation period (typically 14 days). For example, 
Hong Kong has enforced a mandatory quarantine order either 
at home or at a monitoring center for people arriving from 
overseas since February 2020 [2]. 

In contrast to quarantine in dedicated facilities (so-called 
centralized quarantine), home quarantine allows people to stay 
in their apartments or rental rooms. It is a more cost-effective 
approach for containing a large number of low-risk people, 
greatly relieving the effort of facility management and security 
monitoring. Furthermore, home quarantined people often feel 
more comfortable and at ease when staying at the places of 
their choice. 

Any violation of home quarantine (i.e., the confinee’s leav-
ing home within the quarantine period) can present a huge risk 
and cost to public health. Since quarantine places are scattered 
over the city, how to efficiently and continuously monitor the 
confinees becomes a challenging problem. One approach is 
to require the confinees to regularly report their satellite-based 
(e.g., GPS and Beidou) geo-locations for remote checking [3, 
4]. Such regular manual reporting, however, disrupts the nor-
mal lives of the confinees, drains government resources, and 
functions unreliably in crowded buildings where satellite sig-
nals are weak or even absent.Another approach is to conduct 
surprise visits to make sure the confinees are at home. This is 
inefficient due to its large manpower requirement and intrusive 
nature. Because of privacy concerns, these measures cannot 
be conducted in a frequent manner of, say, once every minute, 
hence posing the risk of the confinee’s leaving the quarantine 
place between inspection/report points. 

Due to the prevalence and penetration of IoT technology, 
researchers and developers employ smartphones to transpar-
ently, automatically, and digitally geofence quarantined people 
over time. A common approach is to estimate a confinee’s posi-

tion using Wi-Fi fingerprinting [5, 7], and then check whether 
it falls within the predefined confined area. Although accurate, 
the approach requires much effort on prior calibration of signal 
patterns both inside and outside the quarantine region. This is 
costly and not scalable for highly scattered quarantine places. 

We propose and study a novel and simple IoT geofencing 
technology called SignatureHome, which leverages the distinc-
tive characteristics of the identifiers (IDs) of network facilities 
(e.g., Wi-Fi and cellular network) to determine the in/out status 
of the confinees. It requires neither fine-grained user locations 
nor intensive computational power, making it suitable for large-
scale mobile deployment.

The basic and core principles of SignatureHome have been 
developed as a public app named StayHomeSafe, operated 
and maintained by the Hong Kong government to support 
distributed home quarantine monitoring. It has been success-
fully deployed to hundreds of thousands of entrants to enforce 
home quarantine orders since March 2020 [8]. SignatureHome 
has the following strengths: 
• Accuracy: SignatureHome detects whether the IoT device

with the app (phone in this case) is inside or outside the des-
ignated area with high precision and recall.

• Adaptiveness to home environment and diversity: Signature-
Home works in homes of different layouts and sizes and
adapts to changing signal environments.

• Responsiveness: SignatureHome can quickly detect wheth-
er the confinee has left the quarantine location or not. The
latency is as low as half a minute.

• Automation and non-intrusiveness (ease of use): The system
is “plug and play,” fully automated, easy to use, and requires
little manual interaction.

• Privacy by design: SignatureHome respects user privacy with
data minimization. It makes the in/out decision without need-
ing the exact position of the confinee. Personal data (loca-
tion history, user activities, cameras, photos, voice, etc.) is
not collected or used. The publicly available network IDs
are the only required data. They are collected solely on the
device and do not leave the phone without user consent.

• Lightweight (low power consumption): SignatureHome is sim-
ple to implement and lightweight. Due to its computational
efficiency and minimal use of device sensors, power con-
sumption is low. Running the app does not negatively affect
the normal operation of the device or user experience.
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• Cost eff ectiveness to deploy and maintain: The system does
not require special devices beyond the Bluetooth Low Energy
(BLE) wristbands. The wristband is low-cost, and may be sim-
ply cut and disposed of at the end of the quarantine period.

system oVerVIew
We show in Fig. 1 the operation workfl ow of the IoT-enabled 
quarantine monitoring system. The system consists of a low-cost 
waterproof wristband using BLE and a smartphone owned by 
the confinee. The confinee is first attached with a wristband, 
which periodically broadcasts BLE beacons with its unique ID. 
The wristband is worn by the confinee for the entire quaran-
tine period and cannot be taken off  without cutting the circuit 
and terminating beaconing permanently. Once wearing the 
wristband, the confinee then installs the geofencing app on 
the phone, which pairs with the wristband. By detecting the 
beaconing signals, the smartphone ensures its proximity to the 
wristband, and hence the confinee. The phone also collects 
environmental signals such as Wi-Fi and cellular to make the 
geofencing decision (i.e., whether the phone itself is inside the 
quarantine location). The phone has to be on at all times and 
periodically sends heartbeats to the control center. If the wrist-
band is far from the phone (and hence no beacon is detected 
by the phone) or the phone is not inside the geofenced area, 
the confinee is likely out of the quarantine place. In such a 
case, the control center will be immediately notifi ed. Figure 2 
shows the wristband and a smartphone with the Hong Kong 
StayHomeSafe app for a home confi nee. 

The core of the quarantine monitoring system is Signature-
Home, an effi  cient and practical algorithm for geofencing. Two 
types of network IDs, ambient ID and connection ID, are used 
in SignatureHome, together forming the unique home signature
of the quarantine environment. Signals detected by the con-
fi nees’ devices are compared with the home signatures of the 
geofenced regions to determine their in/out status. 

home sIgnAture
The home signature reflects the unique signal pattern of the 
quarantine location. We introduce two types of ID components 
(ambient ID and connection ID) in the home signature for effi  -
cient geofencing. 

AmbIent Ids
Due to heterogeneous settings of network facilities (e.g., loca-
tions, transmission power) and various indoor layouts (walls, 
household appliances, etc.), diff erent locations are usually cov-
ered by unique sets of ambient networks. We regard the IDs 
of those networks as an important component in the home 
signature. 

Wi-Fi networks usually use service set identifi ers (SSIDs) as 
their names. A wireless network consists of one or more net-
work sections, each of which is covered by a base station such 
as an access point (AP) or a wireless router. The network sec-
tion is identifi ed by the basic service set identifi er (BSSID) [9]. 
By convention, the BSSID is globally unique because it is syn-
onymous with the base station’s medium access control (MAC) 
address. In addition, we can easily obtain nearby BSSIDs by 
scanning Wi-Fi services on mobile devices. Due to its unique-
ness and availability, we regard Wi-Fi BSSIDs as ambient IDs. 
Note that we do not consider cellular networks for ambient IDs 
because most off -the-shelf phones do not provide users access 
to the information of unconnected cellular base stations. 

connectIon Ids
Modern smartphones are able to connect to known networks 
(e.g., Wi-Fi at home) automatically without manual operation. 
Since the settings of the home network are rarely changed, 
such connection preference can be leveraged to recognize if 
the user is inside the quarantine place. Connection IDs involve 
both the connected Wi-Fi network and the connected cellular 

network. For the Wi-Fi network, we consider the following con-
nection IDs: 
• SSID: As mentioned above, an SSID is the name of the Wi-Fi

network. Although a unifi ed Wi-Fi network can be composed
of multiple APs with diff erent BSSIDs, they usually share the
same SSID. We hence use the connected SSID rather than
BSSID to represent the unique home environment.

• Local IP address: The local IP address is assigned by the
dynamic host confi guration protocol (DHCP) service in the
local area network (LAN). A DHCP server tends to assign the
same IP address to the same device if the address resource
is available. We leverage this convention to infer whether the
device connects to the same LAN or not.

• External IP address: The external IP address of the home net-
work is assigned by the Internet service provider (ISP). As the
address is rarely changed, we can use it to infer whether the
connected network is indeed that of the home or not.
In cellular networks, a base station is identifi ed by its location

area code (LAC) and cell ID (CID). We use the combination of 
LAC and CID to represent its unique connection ID. 

It is worth noting that we employ multiple simultaneous IDs 
to verify the connected networks. If we use only a single ID, 
say, SSID, an attacker can easily deceive the system by using a 
portable hotspot with the same network name. The multimodal 
IDs cross-verify the connection and hence greatly improve the 
security, accuracy, and robustness. 

sIgnAturehome: effIcIent Id-bAsed geofencIng
workflow

The workfl ow of SignatureHome consists of two phases: a train-
ing phase that constructs the home signature and an operation 
phase that makes geofencing decisions during the quarantine 
period. The training phase takes place when a confi nee arrives 
at the quarantine accommodation for the fi rst time. He/She is 
required to walk around at home with his/her smartphone for 

Figure 2. The home quarantine monitoring system StayHomeSafe 
deployed in Hong Kong.

Figure 1. The operation workfl ow of the IoT-based home 
quarantine monitoring system.
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several minutes. The phone collects the IDs of both ambient 
networks and connected networks to construct the home sig-
nature. In the operation stage, SignatureHome determines the 
confi nee’s in/out status based on the current sensed signals. It 
compares the observed ambient and connection IDs with the 
home signature and leverages temporal information to make 
the in/out decision. Additionally, SignatureHome identifi es the 
trustworthy at-home IDs obtained in operation to update the 
home signature. The algorithm can be deployed on mobile 
devices for effi  ciency improvement and privacy protection. 

trAInIng phAse: sIgnAture leArnIng
In the training phase, a home signature is constructed using 
Wi-Fi and cellular signals collected at home. This signature is 
synonymous with a virtual geofence for the quarantine accom-
modation. 

One strategy is to store all the training IDs in a database. It 
is widely applied in fi ngerprint-based localization [10]. The con-
fi nee’s in/out status can be obtained by comparing the similar-
ity between the observation and all the entries in the database. 
Although the approach performs well for localization, it has 
two critical issues in home quarantine scenarios. One is that the 
fi ngerprinting model lacks generalizability for the environments 
since the constructed model always fits tightly to the training 
samples. In practice, however, the signal collection is a casual 
process for the confi nees. They may not walk to every location 
in the quarantine accommodation and cannot collect signals 
outside the region, affecting the model’s accuracy. Another 
challenge is the need for large storage to contain the training 
data and high computational power to search for the matched 
results, resulting in the burden of processor and battery on 
mobile devices. 

In SignatureHome, we propose a simplifi ed and unifi ed rep-
resentation for home signature. The ambient IDs in the home 
signature are the union of the observed BSSIDs in the training 
phase. The connection IDs in the home signature involve multi-
ple types of connections. For each kind of connection, we use 
the union of the corresponding connection IDs in the training 
samples as the ID. Generally speaking, the IDs in any observed 
sample inside the geofence are expected to be a subset of the 
corresponding part in the home signature. 

operAtIon phAse: geofencIng decIsIon
In the operation phase, SignatureHome decides whether the 
confinee is inside the geofence. Given an observed signal 
sample, it first determines the probability of being inside the 
geofence by comparing the ambient IDs and the connection 
IDs with the home signature. The algorithm then fuses the 
scores and leverages temporal information to enhance the fi nal 
decisions.

The modules in the geofencing decision are explained below.
Ambient ID Comparison: Since the home signature has 

included all the sensible network IDs inside the geofence, any 

signal at home should have a large proportion of IDs that are 
also in the home signature. We hence defi ne the score of ambi-
ent ID as the ratio of the number of intersection IDs (between 
the targeting sample and home signature) to the total num-
ber of IDs in the targeting sample. The score is a real number 
between 0 and 1. If all the ambient IDs appear in the home 
signature, the highest score, 1, can be obtained. On the con-
trary, the score becomes 0 if none of them matches the home 
signature. 

Connection ID Comparison: To compare connection IDs, we 
check whether the observed connection IDs exist in their corre-
sponding home signature ID sets in the home signature. For any 
type of connection ID, the score will be 1 if the result is posi-
tive, and 0 otherwise. Based on that, we are able to obtain the 
scores of diff erent kinds of connection IDs (SSID, local IP, etc.). 

Score Fusion: We use weighted averaging to fuse the scores 
of ambient and connection IDs. Weights are assigned to the 
ID scores to represent their importance and reliability. To con-
strain the fused score between 0 and 1, all the weights must be 
positive and add up to 1. The weights can be determined by 
empirical settings or an offline learning process. The learning 
alternative can be interpreted as a linear regression problem 
[11], where the scores of different IDs form a feature vec-
tor and the weights are the parameters to be estimated. The 
parameters can be computed by minimizing the total prediction 
error based on an extra set of labeled samples (both in and 
out). In the case when certain IDs are missing (e.g., the phone 
does not connect to Wi-Fi, and hence there is no SSID and 
local IP), we exclude those IDs in computation and normalize 
the scores based on the weights of the remaining IDs. Finally, 
we set a decision threshold T to convert the score to the in/out 
decision. Samples whose scores are greater than T are regarded 
as insiders, while the others are outsiders. 

Temporal Enhancement: Since an individual sample is vul-
nerable to the signal fl uctuation and ambiguity, we introduce 
a post-processing module that leverages temporal information 
to enhance the robustness of the system and user experience. 
Our intuition is that users do not switch regions frequently, 
and hence we can cross-verify the decisions among temporally 
neighboring samples to mitigate the decision error. To deter-
mine the geofencing decision at time t, we look at the observed 
samples within the time window from t –  to t + , where  is 
the parameter controlling the window width. The in/out deci-
sion at time t follows the majority voting on all the independent 
decisions within the time window.

In the process above, SignatureHome visits each sensed ID 
once to determine the intersection between the sensed IDs and 
the home signature. The modules of score fusion and temporal 
enhancement have constant complexity by caching the previ-
ous results. Therefore, the overall time complexity is linear to 
the amount of sensed IDs, which is low in reality.

sIgnAture updAte
Network connections can be changed on user devices. For 
instance, a smartphone will switch to another Wi-Fi network 
when the previous connection is not stable. The geofenc-
ing accuracy will be affected if the new connection ID is not 
recorded in the training stage. To address this, we discuss an 
optional process of updating home signature in operation. 

The general principle of updating signature is to identify the 
valid and trustworthy at-home signals and add their connection 
IDs to the home signature. To approach this, we set up three 
criteria to make sure the sample is indeed at home: 
• The sample should be classifi ed as an insider.
• The score of its ambient IDs should be greater than , where

 is a predefi ned threshold.
• The BSSID of the new connection should be in the ambient

IDs of the home signature.
For every online observed signal, we check whether it sat-

isfi es the criteria above. If all the criteria are met, the sample is 

Figure 3. The workfl ow of SignatureHome, which consists of a 
training phase and an operation phase.
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qualified to update the signature. We can thus add its connec-
tion IDs into the corresponding sets of the home signature if 
the IDs have not appeared before. 

Implementation and Experimental Study
To study and validate the performance of SignatureHome, we 
have implemented a prototype system and conduct extensive 
experiments in the scenario of home quarantine. 

The prototype system consists of a client app built on the 
Android platform and a server to receive and process the leav-
ing-region notifications. The app works as a background service 
in the general operation, reducing disturbance to the users’ 
normal usage. Meanwhile, we develop an experimental mode 
that allows testers to label their in/out status at ease (used for 
collecting the ground truth). The geofencing decision is com-
puted locally on the phone. The testing devices include Mi MIX 
3, Huawei P20, Samsung Galaxy S7, Google Nexus 5, LG Q7+, 
and so on. The versions of the operating system range from 
Android 5 to 10. To balance the responsiveness and power 
consumption, we set the signal sampling interval to 30 s. 

We recruit eight volunteers to participate in the testing. Tes-
ters follow the common quarantine procedure. They first con-
duct the training process to construct the home signatures. 
During the period, they walk around at home for 3 to 5 minutes 
and stay in different rooms for a while. After that, testers start 
the simulation of home quarantine. They stay at home for sev-
eral hours (~2 hours) as the normal at-home case, and leave 
home for a while at an arbitrary time to simulate leaving-home 
cases. To obtain the actual locations as the ground-truth labels, 
testers are required to record the in/out status if it is changed 
(e.g., leaving home or coming back). Table 1 lists the test set-
tings of different quarantine places (e.g., apartment, dormitory 
and house) and sizes (ranging from 6 m2 to 250 m2). Note that, 
due to the pandemic, testers are scattered in different cities 
around the world. This also helps to validate the adaptiveness in 
heterogeneous quarantine environments. 

To quantitatively evaluate the performance of Signature-
Home, we view the geofencing task as a binary classification 
and thus apply classification metrics such as precision and 
recall [12]. In particular, our evaluation focuses on the leav-
ing-home cases since the main objective is to detect whether 
the confinees leave their places or not. Precision is defined as 
the ratio of the number of cases that are correctly recognized 
as outsiders to the total number of outside predictions. Recall is 
the fraction of correct outside predictions among all the cases 
when users are actually out of the home. Precision reflects the 
goodness of the leaving-home alarms, while recall indicates 
whether all the leaving-home cases can be detected. F-measure 
evaluates the comprehensive performance of precision and 
recall, which is defined as their harmonic mean. On the other 
hand, false alarms (i.e., reporting that the confinee leaves while 
he/she does not) is also important in the quarantine monitoring 
as they may affect the user experience and disturb the normal 
operation of the control center. We define the false alarm rate 
as the ratio of the number of false alarms to the total number of 
at-home samples. 

Table 1 also describes the geofencing performance in terms 
of precision, recall, F-measure, and false alarm rate. We can see 
that SignatureHome achieves high precision (0.972 on average) 
and recall (0.928 on average) in general, as well as a low false 
alarm rate (0.014 on average). The data validates Signature-
Home’s high applicability in real-world scenarios and excellent 
adaptiveness to heterogeneous environments. 

To give an intuitive demonstration of how SignatureHome 
geofences the confinee, we plot in Fig. 4 the geofencing scores 
of tester A over time. The tester initially stays at home and ran-
domly moves in different rooms. He then leaves the apartment 
to imitate a quarantined user leaving the accommodation. After 
wandering around the building and the residential district for 
a while, the tester returns home. We can see that the trend 
of scores matches the tester’s trajectory accurately. When the 
tester is inside the apartment, the scores fluctuate around 0.7. 
As he leaves home, the scores dramatically decline to a low 
level (under 0.2). By setting the appropriate decision threshold 
(T = 0.5 in our prototype), SignatureHome is able to adapt to 
heterogeneous environments and make geofencing decisions 
with high accuracy. 

We further investigate the impact of ID choices in the home 
signature. In Fig 5a, we plot the F-measure against different types 
of IDs when temporal enhancement is applied (labeled with 
“w/T.E.”) or not (labeled with “w/o T.E.”), respectively. The col-
ored bars represent the mean F-measure among all the tests, 
and the error bars show their minimum and maximum values. 
We observe that the ambient ID alone does not have as good 
performance as the connection ID, as shown by the lower mean 
F-measure. However, it shows more stable results in terms of the
smaller variance. The reason lies in the different characteristics of
the IDs. Connection ID provides trustworthy at-home informa-
tion, but it does not have sufficient discriminability in ambiguous
zones such as doorways and lobbies. Ambient IDs, on the other
hand, are able to distinguish between fine-grained regions but is
vulnerable to signal noise. This can also be verified by the obser-
vation that temporal enhancement contributes more to the ambi-
ent ID than the connection ID, since the temporal information is
helpful to mitigate the influence of signal noise. SignatureHome
fuses the two types of IDs and applies temporal enhancement,
hence achieving the most accurate and robust performance.

Figure 5b illustrates the impact of window widths in the tem-
poral enhancement. We can observe that a suitable choice of 
window width (60 s) leads to the highest F-measure. When the 
window width is zero, no temporal enhancement is applied, and 
the system hence becomes sensitive to signal fluctuation (with 
low F-measure). On the other hand, an overly large window 
width does not improve the performance since users may have 
long-range movement during the large interval, and the inconsis-
tency of the individual results within confuses the final decision. 

To validate the computational efficiency of SignatureHome, 
we study its power consumption on commercial smartphones 
(LG Q7+). We also implement a GPS-based approach on the 
same device. The battery drain without any geofencing app is 
recorded as a baseline. Figure 5c shows the battery curves with-
in 90 minutes (all the tests start with 90 percent battery life). 
We can see that the power consumption in SignatureHome 
remains close to the baseline (5 percent), while the battery 
declines much quicker in the GPS case (exceeding 10 percent 
under the baseline). This is because SignatureHome uses only 
low-energy network interfaces as sensors, and the algorithm is 
designed with low computational complexity. The minimized 
energy consumption makes it possible to deploy geofencing on 
users’ phones without affecting the normal operation. 

Conclusion
Home quarantine is an effective way to contain the spread of 
infectious diseases such as COVID-19, where the confinees 
are isolated in their accommodations for the virus incubation 
period. We propose and study SignatureHome, an automated 

Figure 4. A fragment of the geofencing scores in the example of 
tester A. The red line shows the scores over time. The dashed 
line in blue represents the decision threshold (T = 0.5). The 
colored background indicates the actual location status, 
where green is inside and red is outside.
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IoT-based geofencing algorithm to cost-effectively monitor the 
confinees. The basic principles and core ideas of Signature-
Home have been implemented as a publicly available home 
quarantine app called StayHomeSafe by the Hong Kong gov-
ernment to enforce the home quarantine order. Paired with a 
BLE wristband, the system has been serving hundreds of thou-
sands of entrants into Hong Kong since March 2020. 

SignatureHome leverages the IDs of Wi-Fi and cellular net-
works to create a home signature. By comparing the observed 
signals of the confinee with the home signature, Signature-
Home can efficiently detect the in/out status of the confinee. 
The algorithm is lightweight, responsive, adaptive, privacy-pre-
serving, and cost-effective to deploy and maintain. Our exten-
sive experimental results validate its design and high accuracy in 
terms of precision, recall, F-measure, and false alarm rate. 
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Table 1. The experimental settings and geofencing performance.

Tester
Quarantine location Geofencing performance

Location Type Area Precision Recall F-measure False alarm rate

A
B
C
D
E
F
G
H

Hong Kong, China
Hong Kong, China
Hong Kong, China
Shanghai, China

Changchun, China
Shantou, China

Shenzhen, China
San Diego, U.S.

Apartment
Apartment
Dormitory
Apartment
Apartment
Apartment
Apartment

House (2 floors)

~60 m2

~40 m2

~6 m2

~100 m2

~120 m2

~100 m2

~50 m2

~250 m2

1.000
1.000
0.955
1.000
0.992
0.875
1.000
0.953

0.971
0.995
0.984
0.939
1.000
0.848
0.800
0.885

0.986
0.997
0.969
0.968
0.996
0.862
0.889
0.918

0.000
0.000
0.012 
0.000 
0.003 
0.019 
0.000
0.077

Mean — — — 0.972 0.928 0.948 0.014 

Figure 5. The experimental results: a) geofencing performance under different categories of IDs; b) geofencing performance under 
different window widths; c) power consumption under different geofencing approaches.
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