
1

Comp 5311 Database Management Systems

4. SQL 2

2

Basic SQL Structure

• Typical SQL query:
select A1, A2, …, An

from R1, R2, …, Rm

where P

- Ai represent attributes
- Ri represent relations
- P is a predicate.

• Example Tables:
– Branch (branch-name, branch-city, assets)

– Customer (customer-name, customer-street, customer-city)

– Loan (loan-number, amount, branch-name)

– Account (account-number, balance, branch-name)

– Borrower (customer-name, loan-number)

– Depositor (customer-name, account-number)

3

SQL - Nested Subqueries

• The result of every SQL statement is considered a table even if it is
a single value or null

• You can replace a value or set of values with a SQL statement (ie.,
a subquery)

• Illegal if the subquery returns the wrong type for the comparison

4

Check for each borrower

if he/she is also a depositor

Return the set of depositors

Example Query - IN

• Find all customers who have both an account and a
loan in the bank.

select distinct customer-name
from borrower
where customer-name in (select customer-name

from depositor)

5

Example Query – NOT IN

• Find all customers who have a loan at the bank but
do not have an account at the bank.

select distinct customer-name
from borrower
where customer-name not in (select customer-name

from depositor)

6

Assets of all branches in Brooklyn

The Some Clause

• Find all branches that have greater assets than some
branch located in Brooklyn
– Equivalent to “find all branches that have greater assets

than the minimum assets of any branch located in Brooklyn”

select branch-name
from branch
where assets > some

(select assets
from branch
where branch-city = “Brooklyn”)

7

Some Semantics

(5 < some) returns true (5 < 6)

(5 < some) returns false

(5 = some) = true

(5  some) = true (since 0  5)

0

5

0

5

6

0

5

0

5

Note:

(= some) is equivalent to in

However, ( some) is not

equivalent to not in

8

Assets of all branches in Brooklyn

The All Clause

• Find the names of all branches that have greater assets than all
branches located in Brooklyn.

– Equivalent to “find all branches that have greater assets than the
maximum assets of any branch located in Brooklyn”

select branch-name
from branch
where assets > all

(select assets
from branch
where branch-city=“Brooklyn”)

9

All Semantics

(5 < all) = false

(5 < all) = true

(5 = all) = false

(5  all) = true

4

5

0

5

6

6

10

6

10

Note:

( all) is equivalent to not in

However, (= all) is not equivalent

to in

10

Test for Empty Relations

• exists returns true if the argument subquery is nonempty.

• Find all customer names who have both a loan and an account.

select customer-name from depositor as D where exists
(select * from borrower as B where D.customer-name =
B.customer-name)

• Find all customer names who have an account but no loan.

select customer-name from depositor as D where not exists
(select * from borrower as B where D.customer-name =
B.customer-name)

11

Customers at Perryridge with same name as T

Test for Absence of Duplicate Tuples

Find depositors with

same name as T

For each depositor T, check ...

• unique tests whether a subquery has any duplicate tuples in its result.

• Find all customers who have only one account at the Perryridge branch.

select T.customer-name
from depositor as T
where unique (

select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = “Perryridge”)

12

Example Query – NOT UNIQUE

• Find all customers with at least 2 accounts at the Perryridge branch.

select T.customer-name
from depositor as T
where not unique(

select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = “Perryridge”)

13

For each

customer S,

check ...

Branches in Brooklyn

where customer S

doesn’t have an account

Branches where

customer S

has an account

Division in SQL

X – Y =   X 

• Find all customers with an account at all branches located in Brooklyn.

select distinct S.customer-name
from depositor as S
where not exist (

(select branch-name
from branch
where branch-city=“Brooklyn”)
except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and

S.customer-name = T.customer-name))

14

Aggregate Functions

• Operate on a column of a relation, and return a value
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

• Note: for our examples we use the tables:

– Branch (branch-name, branch-city, assets)

– Account (account-number, balance, branch-name)

– Depositor (customer-name, account-number)

– Customer (customer-name, customer-street, customer-city)

15

Aggregate Function Computation

• Find the average account balance at the Perryridge branch.

select avg(balance)
from account
where branch-name=“Perryridge”

account select balance

from account

where branch-name

=“Perryridge”
Avg()

120,000

Balances of Perryridge accounts

16

Examples of Aggregate Functions

• Find the numbers of tuples in the account relation.
select count(*)
from account

– remember * stands for all attributes

– Same as:
select count(branch-name)
from account

– Different from:
select count(distinct branch-name)
from account

– Because branch-name is not a key in account

17

Group by

• Find the number of accounts for each branch.
select branch-name, count(account-number)
from account
group by branch-name

• For each group of tuples with the same branch-name, count the
account-numbers for this group

branch-name count-account-no

Perryridge

Brighton

Redwood

2

2

1

branch-name account-number balance

Perryridge

Brighton

Perryridge

Brighton

Redwood

a-102

a- 217

a-201

a-215

a-222

400

750

900

750

700

branch-name account-number balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

a-102

a-201

a-217

a-215

a-222

400

900

750

750

700

account table

18

• Attributes in select clause outside of aggregate functions must
appear in group by list, why?

select branch-name, balance, count(distinct account-number)
from account
group by branch-name

branch-

name

account-

number

balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

a-102

a-201

a-217

a-215

a-222

400

900

750

750

700

select … from account

group by branch-name, balance

OR

select branch-name, sum(balance), count(…)

from account group by branch-name

Group by Attributes

correct

19

• Find the number of depositors for each branch.

select branch-name, count(distinct customer-name)
from depositor, account
where depositor.account-number = account.account-number
group by branch-name

• Perform Join then group by then count (distinct ())

depositor (customer-name, account-number)
account (account-number, branch-name, balance)
Join  (customer-name, account-number, branch-name, balance)

• Group by and aggregate functions apply to the Join result

Group by with Join

20

Group by Evaluation

select branch-name, customer-name

from depositor, account

where depositor.account-number

= account.account-number

branch-name cust-name

Perryridge John Wong

Perryridge Jacky Chan

Perryridge John Wong

Uptown John Wong

Downtown John Wong

Uptown Mary Kwan

Downtown Pat Lee

Downtown May Cheung

branch-name cust-name

Perryridge John Wong

Perryridge Jacky Chan

Perryridge John Wong

Uptown John Wong

Downtown John Wong

Uptown Mary Kwan

Downtown Pat Lee

Downtown May Cheung

group by

branch-name cust-name

Perryridge John Wong

Perryridge Jacky Chan

Uptown John Wong

Downtown John Wong

Uptown Mary Kwan

Downtown Pat Lee

Downtown May Cheung

distinct

count

branch-name

Perryridge

Uptown

Downtown

count

2

2

3join

21

Having Clause (condition on the groups)

• Find the names and average of balances of all branches where
the average account balance is more than $700

select branch-name, avg(balance)
from account
group by branch-name
having avg (balance) >700

• predicates in the having clause are applied to each group after
the formation of groups

branch-

name

account-

number

balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

a-102

a-201

a-217

a-215

a-222

400

900

750

750

700

22

Having Clause

• Display the names of all branches in Hong Kong where the
average account balance is more than $700

select branch-name
from account, branch
where account.branch-name=branch.branch-name
and branch-city="Hong Kong"

group by branch-name
having avg (balance) >700

• first you find the records that satisfy the where condition, then
you form the groups (including only those records), and finally
you apply the having clause to each group

23

Return avg balance

of each branch

• Find the name(s) of branches with the maximum average
account balance.

select branch-name
from (select branch-name, avg(balance)

from account
group by branch-name)
as result (branch-name, avg-balance)

where avg-balance =

(select max(avg-balance)

from result))

Derived Relations

