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Basic SQL Structure

• Typical SQL query:
select A1, A2, …, An

from R1, R2, …, Rm

where P

- Ai represent attributes
- Ri represent relations
- P is a predicate.

• Example Tables:
– Branch (branch-name, branch-city, assets)

– Customer (customer-name, customer-street, customer-city)

– Loan (loan-number, amount, branch-name)

– Account (account-number, balance, branch-name)

– Borrower (customer-name, loan-number)

– Depositor (customer-name, account-number)
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SQL - Nested Subqueries

• The result of every SQL statement is considered a table even if it is 
a single value or null

• You can replace a value or set of values with a SQL statement (ie., 
a subquery)

• Illegal if the subquery returns the wrong type for the comparison
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Check for each borrower

if he/she is also a depositor

Return the set of depositors

Example Query - IN

• Find all customers who have both an account and a 
loan in the bank.

select distinct customer-name
from borrower
where customer-name in (select customer-name

from depositor)
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Example Query – NOT IN

• Find all customers who have a loan at the bank but 
do not have an account at the bank.

select distinct customer-name
from borrower
where customer-name not in (select customer-name

from depositor)
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Assets of all branches in Brooklyn

The Some Clause

• Find all branches that have greater assets than some 
branch located in Brooklyn 
– Equivalent to “find all branches that have greater assets 

than the minimum assets of any branch located in Brooklyn” 

select branch-name
from branch
where assets > some

(select assets 
from branch
where branch-city = “Brooklyn”)
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Some Semantics

(5 < some         ) returns true (5 < 6)

(5 < some         ) returns false

(5 = some         ) = true

(5  some         ) = true (since 0  5)
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Note:

(= some) is equivalent to in

However, ( some) is not 

equivalent to not in



8

Assets of all branches in Brooklyn

The All Clause

• Find the names of all branches that have greater assets than all
branches located in Brooklyn.

– Equivalent to “find all branches that have greater assets than the 
maximum assets of any branch located in Brooklyn”

select branch-name
from branch
where assets > all

(select assets
from branch
where branch-city=“Brooklyn”)
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All Semantics

(5 < all         ) = false

(5 < all         ) = true

(5 = all         ) = false

(5  all         ) = true 
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Note:

( all) is equivalent to not in

However, (= all) is not equivalent 

to in
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Test for Empty Relations

• exists returns true if the argument subquery is nonempty.

• Find all customer names who have both a loan and an account.

select customer-name from depositor as D where exists
(select * from borrower as B where D.customer-name = 
B.customer-name)

• Find all customer names who have an account but no loan.

select customer-name from depositor as D where not exists
(select * from borrower as B where D.customer-name = 
B.customer-name)
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Customers at Perryridge with same name as T

Test for Absence of Duplicate Tuples

Find depositors with

same name as T

For each depositor T, check ...

• unique tests whether a subquery has any duplicate tuples in its result.

• Find all customers who have only one account at the Perryridge branch.

select T.customer-name
from depositor as T
where unique (

select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = “Perryridge”)
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Example Query – NOT UNIQUE

• Find all customers with at least 2 accounts at the Perryridge branch.

select T.customer-name
from depositor as T
where not unique(

select R.customer-name
from account, depositor as R
where T.customer-name = R.customer-name and
R.account-number = account.account-number and
account.branch-name = “Perryridge”)
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For each

customer S,

check ...

Branches in Brooklyn

where customer S

doesn’t have an account

Branches where

customer S

has an account

Division in SQL

X – Y =   X 

• Find all customers with an account at all branches located in Brooklyn.

select distinct S.customer-name
from depositor as S
where not exist (

(select branch-name
from branch 
where branch-city=“Brooklyn”)
except
(select R.branch-name
from depositor as T, account as R
where T.account-number = R.account-number and

S.customer-name = T.customer-name) )
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Aggregate Functions

• Operate on a column of a relation, and return a value
avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

• Note: for our examples we use the tables: 

– Branch (branch-name, branch-city, assets)

– Account (account-number, balance, branch-name)

– Depositor (customer-name, account-number)

– Customer (customer-name, customer-street, customer-city)
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Aggregate Function Computation 

• Find the average account balance at the Perryridge branch.

select avg(balance)
from account
where branch-name=“Perryridge”

account select balance

from account

where branch-name

=“Perryridge”
Avg()

120,000

Balances of Perryridge accounts
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Examples of Aggregate Functions

• Find the numbers of tuples in the account relation.
select count(*)
from account

– remember * stands for all attributes

– Same as:
select count(branch-name)
from account

– Different from:
select count(distinct branch-name)
from account

– Because branch-name is not a key in account
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Group by 

• Find the number of accounts for each branch. 
select branch-name, count(account-number)
from account
group by branch-name

• For each group of tuples with the same branch-name, count the 
account-numbers for this group 

branch-name count-account-no 

Perryridge 

Brighton 

Redwood 

2 

2 

1 

 

 

branch-name account-number balance

Perryridge

Brighton

Perryridge

Brighton

Redwood

a-102

a- 217

a-201

a-215

a-222

400

750

900

750

700

branch-name account-number balance 

Perryridge 

Perryridge 

Brighton 

Brighton 

Redwood 

a-102 

a-201 

a-217 

a-215 

a-222 

400 

900 

750 

750 

700 
 

 

account table
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• Attributes in select clause outside of aggregate functions must 
appear in group by list, why?

select branch-name, balance, count( distinct account-number)
from account
group by branch-name

branch-

name

account-

number

balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

a-102

a-201

a-217

a-215

a-222

400

900

750

750

700

select … from account

group by branch-name, balance

OR

select branch-name, sum(balance), count(…) 

from account  group by branch-name

Group by Attributes 

correct
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• Find the number of depositors for each branch.

select branch-name, count( distinct customer-name)
from depositor, account
where depositor.account-number = account.account-number
group by branch-name

• Perform Join  then group by then count ( distinct () )

depositor (customer-name, account-number)
account (account-number, branch-name, balance)
Join  (customer-name, account-number, branch-name, balance)

• Group by and aggregate functions apply to the Join result

Group by with Join 
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Group by Evaluation

select branch-name, customer-name

from depositor, account

where depositor.account-number

= account.account-number

branch-name cust-name

Perryridge John Wong

Perryridge Jacky Chan

Perryridge John Wong

Uptown John Wong

Downtown John Wong

Uptown Mary Kwan

Downtown Pat Lee

Downtown May Cheung

branch-name cust-name

Perryridge John Wong

Perryridge Jacky Chan

Perryridge John Wong

Uptown John Wong

Downtown John Wong

Uptown Mary Kwan

Downtown Pat Lee

Downtown May Cheung

group by

branch-name cust-name

Perryridge John Wong

Perryridge Jacky Chan

Uptown John Wong

Downtown John Wong

Uptown Mary Kwan

Downtown Pat Lee

Downtown May Cheung

distinct

count

branch-name

Perryridge

Uptown

Downtown

count

2

2

3join
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Having Clause (condition on the groups)

• Find the names and average of balances of all branches where 
the average account balance is more than $700

select branch-name, avg(balance)
from account
group by branch-name
having avg (balance) >700

• predicates in the having clause are applied to each group after 
the formation of groups

branch-

name

account-

number

balance

Perryridge

Perryridge

Brighton

Brighton

Redwood

a-102

a-201

a-217

a-215

a-222

400

900

750

750

700
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Having Clause

• Display the names of all branches in Hong Kong where the 
average account balance is more than $700

select branch-name
from account, branch
where account.branch-name=branch.branch-name 
and branch-city="Hong Kong"

group by branch-name
having avg (balance) >700

• first you find the records that satisfy the where condition, then 
you form the groups (including only those records), and finally 
you apply the having clause to each group
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Return avg balance

of each branch

• Find the name(s) of branches with the maximum average
account balance.

select branch-name
from (select branch-name, avg(balance)

from account
group by branch-name)
as result (branch-name, avg-balance)

where avg-balance = 

(select max(avg-balance)

from result))

Derived Relations


