
1

Comp 5311 Database Management Systems

3. SQL 1

2

Structured Query Language - SQL

▪ Most common Query Language – used in all
commercial systems

• Discussion is based on the SQL92 Standard.
Commercial products have different features of SQL, but the
basic structure is the same

▪ Data Manipulation Language

▪ Data Definition Language

▪ Constraint Specification

▪ Embedded SQL

▪ Transaction Management

▪ Security Management

3

Basic Structure

• SQL is based on algebra operations with certain modifications
and enhancements

• A typical SQL query has the form:
select A1, A2, …, An

from R1, R2, …, Rm

where P

- Ai represent attributes
- Ri represent relations
- P is a predicate.

• This query is equivalent to the relational algebra expression:
A1, A2, …, An(P(R1  R2  …  Rm))

• The result of an SQL query is a table (but may contain
duplicates). SQL statements can be nested.

4

Projection

• The select clause corresponds to the projection operation of the relational
algebra. It is used to list the attributes desired in the result of a query.

• Find the names of all branches in the loan relation
select branch-name
from loan

Equivalent to: branch-name(loan)

• An asterisk in the select clause denotes “all attributes”
select *
from loan

• Note: for our examples we use the tables:
– Branch (branch-name, branch-city, assets)

– Customer (customer-name, customer-street, customer-city)

– Loan (loan-number, amount, branch-name)

– Account (account-number, balance, branch-name)

– Borrower (customer-name, loan-number)

– Depositor (customer-name, account-number)

5

Duplicate Removal

• SQL allows duplicates in relations as well as in query
results. Use select distinct to force the elimination of
duplicates.
Find the names of all branches in the loan relation,
and remove duplicates

select distinct branch-name

from loan

• The keyword all specifies that duplicates are not
removed (optional for this query).

select all branch-name

from loan

force the DBMS to

remove duplicates

force the DBMS not

to remove duplicates

6

Arithmetic Operations on Retrieved
Results

• The select clause can contain arithmetic expressions
involving the operators,+,−, and , and operating on
constants or attributes of tuples.

• The query:
select branch-name, loan-number, amount * 100

from loan

would return a relation which is the same as the loan
table, except that the attribute amount is multiplied
by 100

7

The where Clause

• The where clause specifies conditions that tuples in the relations
in the from clause must satisfy.

• Find all loan numbers for loans made at the Perryridge branch
with loan amounts greater than $1200.

select loan-number
from loan
where branch-name=“Perryridge” and amount >1200

• SQL allows logical connectives and, or, and not. Arithmetic
expressions can be used in the comparison operators.

• Note: attributes used in a query (both select and where parts)
must be defined in the relations in the from clause.

8

The where Clause (Cont.)

• SQL includes the between operator for convenience.

• Find the loan number of those loans with loan amounts between
$90,000 and $100,000 (that is,  $90,000 and  $100,000)

select loan-number
from loan
where amount between 90000 and
100000

9

The from Clause

• The from clause corresponds to the Cartesian product
operation of the relational algebra.

• Find the Cartesian product borrower  loan
select *

from borrower, loan

It is rarely used without a where clause.

• Find the name and loan number of all customers
having a loan at the Perryridge branch.

select distinct customer-name, borrower.loan-number

from borrower, loan
where borrower.loan-number = loan.loan-number and
branch-name = “Perryridge”

10

The Rename Operation

• Renaming relations and attributes using the as clause:
old-name as new-name

• Find the name and loan number of all customers having a loan
at the Perryridge branch; replace the column name loan-number
with the name loan-id.

select distinct customer-name, borrower.loan-number as loan-id
from borrower, loan
where borrower.loan-number = loan.loan-number and

branch-name = “Perryridge”

11

Tuple Variables/Alias

• Tuple variables are defined in the from clause via the use of the
“as” clause.

• Find the customer names and their loan numbers for all customers
having a loan at some branch.

select distinct customer-name, T.loan-number
from borrower as T, loan as S
where T.loan-number = S.loan-number

• Tuple variable/Alias can be used as short hand, but it is more than
just a short hand (see next slide)

12

Tuple Variables/Alias

• Find the names of all branches that have greater assets than
some branch located in Brooklyn.

select distinct T.branch-name

from branch as T, branch as S

where T.assets > S.assets and S.branch-city=“Brooklyn”

branch branch

T

S: a branch in

Brooklyn

branches in
Brooklyn

Does it returns branches within Brooklyn?

13

String Operations

• Character attributes can be compared to a pattern:
% matches any substring.
_ matches any single character.

• Find the name of all customers whose street
includes the substring ‘Main’. (Eg Mainroad,
Smallmain Road, AMainroad,…)

select customer-name
from customer
where customer-street like “%Main%”

14

Ordering the Display of Tuples

• List in alphabetic order the names of all customers having a
loan at Perryridge branch

select distinct customer-name
from borrower, loan
where borrower.loan-number = loan.loan-number and
branch-name = “Perryridge”
order by customer-name

• order by customer-name desc, amount asc
desc for descending order; asc for ascending order (default)

• SQL must perform a sort to fulfill an order by request. Since
sorting a large number of tuples may be costly, it is desirable to
sort only when necessary.

15

Set Operations

• The set operation union, intersect, and except operate on
relations and correspond to the relational algebra operations ,
 and −.

• Each of the above operations automatically eliminates
duplicates; to retain all duplicates use union all, intersect all and
except all.

• Suppose a tuple occurs m times in r and n times in s, then, it
occurs:

– m + n times in r union all s

– min(m,n) times in r intersect all s

– max(0,m-n) times in r except all s

16

Set operations

• Find all customers who have a loan, an account, or both:
(select customer-name from depositor)
union
(select customer-name from borrower)

• Find all customers who have both a loan and an account.
(select customer-name from depositor)
intersect
(select customer-name from borrower)

• Find all customers who have an account but no loan.
(select customer-name from depositor)
except
(select customer-name from borrower)

17

Example Database

sid sname rating age

22 dustin 7 45.0

31 lubber 8 55.5

58 rusty 10 35.0

sid bid day

22 101 10/10/96

58 103 11/12/96

ReservesSailors

Sailors (sid, sname),

Reserves (sid, bid, date),

Boats (bid,bname,color)

18

Find the names of sailors who reserved bid=103

SELECT S.sname
FROM Sailors as S, Reserves as R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

19

• If we replace OR by

AND in the first

version, what do we

get?

• What do we get if we

replace UNION by

EXCEPT in the second

version?

SELECT R.sid

FROM Boats as B, Reserves as R

WHERE R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

Alternative

SELECT R.sid

FROM Boats as B, Reserves as R

WHERE R.bid=B.bid

AND B.color=‘red’

UNION

SELECT R.sid

FROM Boats as B, Reserves as R

WHERE R.bid=B.bid

AND B.color=‘green’

Find sid’s of sailors who’ve reserved a red or a green boat

20

Find sid’s of sailors who’ve reserved a red and a green boat

• What if instead of
the sid we want the
sname? Would the
queries be correct if
we replace SELECT
S.sid with S.sname?

SELECT S.sid
FROM Sailors as S, Boats as B1, Reserves as R1,

Boats as B2, Reserves as R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid
AND B1.color=‘red’ AND S.sid=R2.sid

AND R2.bid=B2.bid AND B2.color=‘green’

SELECT S.sid
FROM Sailors as S, Boats as B, Reserves as R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT

SELECT S.sid
FROM Sailors as S, Boats as B, Reserves as R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Key field!

