
1

Comp 5311 Database Management Systems

2. Relational Model and Algebra

2

Basic Concepts of the Relational Model

• Entities and relationships of the E-R model are stored
in tables also called relations (not to be confused with
relationships in the E-R model)

• Well-defined semantics and languages for
manipulating the tables

• Ease of implementation – write queries on tables
without caring about the physical level and
optimization issues

• Most popular DBMSs today are based on relational
data model (or an extension of it, e.g., object-
relational data model)

3

Terminology

• Relation  table; denoted by R(A1, A2, ..., An) where R is a
relation name and (A1, A2, ..., An) is the relation schema of R

• Attribute (column)  denoted by Ai

• Tuple (Record)  row

• Attribute value  value stored in a table cell

• Domain  legal type and range of values of an attribute
denoted by dom(Ai)

– Attribute: Age Domain: [0-100]

– Attribute: EmpName Domain: 50 alphabetic chars

– Attribute: Salary Domain: non-negative integer

4

STUDENT

Name Student-id Age CGA

Chan Kin Ho 99223367 23 11.19

Lam Wai Kin 96882145 17 10.89

Man Ko Yee 96452165 22 8.75

Lee Chin Cheung 96154292 16 10.98

Alvin Lam 96520934 15 9.65

Attributes/Columns (schema)Relation Name/Table Name

An Example Relation

5

Characteristics of Relations

• Tuples in a relation are not considered to be ordered, even though
they appear to be in a tabular form. (Recall that a relation is a set of
tuples.)

• All attribute values are considered atomic. Multivalued and composite
attribute values are not allowed in tables, although they are permitted
by the ER diagrams

• A special null value is used to represent values that are:

– Not applicable (phone number for a client that has no phone)

– Missing values (there is a phone number but we do not know it yet)

– Not known (we do not know whether there is a phone number or not)

6

• Let K  R (I.e., K is a set of attributes which is a subset of the schema
of R)

• K is a superkey of R if K can identify a unique tuple in a given relation
r(R)

Keys

Student(SID, HKID, Name, Address, …)
where SID and HKID are unique.
Possible superkeys: SID

HKID
{SID, Name}
{HKID, Name, Address}
plus many others

• K is a candidate key if K is minimal

– In the above example there are two candidate keys: SID and HKID

• Every relation must have at least one candidate key.

• If there are multiple, one is chosen as the primary key.

7

Need for Multiple Tables

• Storing all information as a single relation such as
bank(account-number, balance, customer-name, customer-addr, ..)
results in

– repetition of information (e.g. repeat the customer info for each of
his/her accounts)

– the need for null values (e.g. represent a customer without an account)

• That is why we need the ER diagrams (and some additional
normalization techniques discussed later) to break up information into
parts, with each relation storing one part.

E.g.: account : stores information about accounts
depositor : stores information about which customer

owns which account
customer : stores information about customers

8

Reduction of an E-R Schema to Relations

• A database which conforms to an E-R diagram can be
represented by a collection of tables.

• Converting an E-R diagram to a table format is
“automatic”.

• For each entity set there is a unique table which is
assigned the name of the corresponding entity set.

• Each table has a number of columns (generally
corresponding to attributes), which have unique names.

9

Composite and Multivalued Attributes

• Composite attributes are flattened out by creating a separate attribute
for each component attribute
– E.g. given entity set customer with composite attribute name with

component attributes first-name and last-name the customer table has two
attributes

name.first-name and name.last-name

• A multivalued attribute M of an entity E is represented by a separate
table EM
– Table EM has attributes corresponding to the primary key of E and an

attribute corresponding to multivalued attribute M

– E.g. Multivalued attribute phone-number of employee is represented by a
table

employee-phone(employee-id, phone-number)

– Each value of the multivalued attribute maps to a separate row of the table
EM

• E.g., an employee with primary key 19444 and phones 23580000, 95555555
maps to two rows: (19444, 23580000) and (19444, 95555555)

10

Representing Weak Entity Sets

A weak entity set becomes a table that includes a column for the primary key of the

identifying strong entity set

11

Representing Relationship Sets as Tables
• A many-to-many relationship set is represented as a table with columns for the

primary keys of the two participating entity sets, and any descriptive attributes
of the relationship set.

• E.g.: table for relationship set borrower

12

Redundancy of Tables

Many-to-one and one-to-many relationship sets that are total on the many-side
can be represented by adding an extra attribute to the many side, containing the
primary key of the one side

Instead of creating a table for relationship account-branch, add the key of branch
(branch-name) to the entity set account

branch-name in account is a foreign key

13

Redundancy of Tables (Cont.)

• For one-to-one relationship sets, either side can be chosen to act
as the “many” side
– That is, extra attribute can be added to either of the tables corresponding to

the two entity sets

• If participation is partial on the many side, replacing a table by
an extra attribute in the relation corresponding to the “many” side
could result in null values

• The table corresponding to a relationship set linking a weak
entity set to its identifying strong entity set is redundant.

– E.g. The payment table already contains the information that would appear
in the loan-payment table (i.e., the columns loan-number and payment-
number).

14

Representing Specialization as Tables

• Method 1:

– Form a table for the higher level entity

– Form a table for each lower level entity set, include
primary key of higher level entity set and local
attributes

table table attributes
person id, name, street, city
customer id, credit-rating
employee id, salary

– Drawback: getting information about, e.g., employee
requires accessing two tables

15

Specialization as Tables (Cont.)

• Method 2:

– Form a table for each entity set with all local and
inherited attributes

table table attributes

person id, name, street, city
customer id, name, street, city, credit-rating
employee id, name, street, city, salary

If specialization is total, no need to create table for
generalized entity (person)

– Drawback: street and city may be stored redundantly
for persons who are both customers and employees

16

Relational Query Languages

• Query languages (QL): Allow retrieval of data from a
database.

• Relational model supports simple, powerful QLs:

– Strong formal foundation based on logic.

– Allows for much optimization.

• Query Languages != programming languages!

– QLs not expected to be “Turing complete”.

– QLs not intended to be used for complex calculations.

– QLs support easy and efficient access to large data sets.

17

Formal Relational Query Languages

• Two mathematical Query Languages form the basis
for “real” languages (e.g. SQL), and for
implementation:

Relational Algebra: Procedural, very useful for
representing execution plans.

Relational Calculus: Lets users describe what they
want, rather than how to compute it. (Non-
Procedural, declarative.)

We focus on Algebra: Understanding Algebra is key to
understanding SQL and query processing!

18

Relational Algebra

• Basic operations:

– Projection () Deletes unwanted columns from relation.

– Selection () Selects a subset of rows from relation.

– Set-difference (-) Finds tuples in table 1, but not in table 2.

– Union () Finds tuples that belong to table 1 or table 2.

– Cross-product (x) Allows us to combine two relations.

– Rename (p) Allows us to rename a relation and/or its attributes.

• Additional operations:

– Intersection, join, division: Not essential, but (very!) useful.

• Each operation returns a relation, and operations can be composed!
Algebra is “closed”.

19

Projection L(R)

• Deletes attributes that are not in projection list L.

• Schema of result contains exactly the fields in the projection list, with
the same names that they had in the (only) input relation.

• Projection operator eliminates duplicates!

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

MD DC10

MD DC9

Maker(Plane)Plane

Maker

Airbus

MD

20

Selection c(R)

• Selects rows (records/tuples) that satisfy a selection condition c.

• Schema of result identical to schema of (only) input relation.

• A condition c has the form: Term Op Term
– where Term is an attribute name or Term is a constant

– Op is one of <, >, =, , etc.

• (C1  C2), (C1  C2), ( C1) are conditions where C1 and C2 are
conditions.

•  means AND

•  means OR

•  means NOT

21

Selection example

• No duplicates in result! (Why?)

• The resulting relation can be the input for another relational
algebra operation! (Operator composition)

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

MD DC10

MD DC9

Plane
Maker=“MD”(Plane)

Maker Model_No

MD DC10

MD DC9

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

MD DC10

MD DC9

Plane
Model_No(Maker=“MD”(Plane))

Model_No

DC10

DC9

22

Set Operations

• Union, Intersection, Set-Difference

• These three operations take two input relations, which must be
union-compatible:

• Same number of fields.

• Corresponding fields have the same type.

• Output is a single relation (that does not contain
duplicates)

23

Set operations - Union

• Plane1  Plane2

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

MD DC10

MD DC9

Maker Model_No

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9

 =

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9

24

Set operations – Set difference

• Plane1 — Plane2

– Contains records that appear in Plane1 but not Plane2

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

MD DC10

MD DC9

Maker Model_No

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9

— =

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

25

Set operations - Intersection

• Plane1  Plane2

– Contains records that appear in both tables

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

MD DC10

MD DC9

Maker Model_No

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9

 =

Maker Model_No

MD DC9

MD DC10

26

Intersection is not a primitive operation

• RS = ((RS)  (RS))  (SR)

Compute all tuples

belonging to R or S
Remove the ones that

belong only to R

Remove the ones that

belong only to S

Also: RS = R (RS)

27

Cartesian Product

• Combines each row of one table
with every row of another table

• Can_fly  Plane

Emp_No Model_No

1001 B727

1001 B747

1001 DC10

1002 A320

1002 A340

1002 B757

1002 DC9

1003 A310

1003 DC9



Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9

81 t-uples!!!

Emp_No Model_No Maker Model_No

1001 B727 Airbus A310

1001 B727 Airbus A320

1001 B727 Airbus A330

1001 B727 Airbus A340

1001 B727 Boeing B727

1001 B727 Boeing B747

1001 B727 Boeing B757

1001 B727 MD DC10

1001 B727 MD DC9

1001 B747 Airbus A310

1001 B747 Airbus A320

1001 B747 Airbus A330

1001 B747 Airbus A340

1001 B747 Boeing B727

1001 B747 Boeing B747

1001 B747 Boeing B757

1001 B747 MD DC10

1001 B747 MD DC9

1001 B727 Airbus A310

1001 B727 Airbus A320

… … … …

=

28

Join

• Generating all possible combinations of tuples is not usually meaningful.

• In the previous example, it makes more sense to combine each tuple of
Can_Fly with the corresponding record of the Plane.

• Join is a cartesian product followed by a selection:

R1 c R2 = c(R1  R2)

• Sometimes we use the word JOIN instead of symbol

• Types of joins:

-join: arbitrary conditions in the selection

Equijoin: all conditions are equalities

Natural join: combines two relations on the equality of the attributes
with the same names

• Both equijoin and natural join project only one of the redundant
attributes

29

Natural Join Example

Can_fly n Plane

Can_fly JOINn Plane

Can_fly JOINModel_NoPlane

Can_fly JOINCan_fly.Model_No=Plane.Model_NoPlane

Emp_No Model_No

1001 B727

1001 B747

1001 DC10

1002 A320

1002 A340

1002 B757

1002 DC9

1003 A310

1003 DC9

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9

=

Emp_No Model_No Maker

1003 A310 Airbus

1002 A320 Airbus

1002 A340 Airbus

1001 B727 Boeing

1001 B747 Boeing

1002 B757 Boeing

1001 DC10 MD

1002 DC9 MD

1003 DC9 MD

n

30

-Join Example

• We have a Flight table that records the Number of the flight, Origin, Destination,

Departure and Arrival Time.

• We join this table with itself (self-join) using the condition:

• Flight1.Dest = Flight2.Origin  Flight1.Arr_Time < Flight2.Dept_Time

• What should we get?

Num Origin Dest Dep_Time Arr_Time

334 ORD MIA 12:00 14:14

335 MIA ORD 15:00 17:14

336 ORD MIA 18:00 20:14

337 MIA ORD 20:30 23:53

394 DFW MIA 19:00 21:30

395 MIA DFW 21:00 23:43

Num Origin Dest Dep_Time Arr_Time

334 ORD MIA 12:00 14:14

335 MIA ORD 15:00 17:14

336 ORD MIA 18:00 20:14

337 MIA ORD 20:30 23:53

394 DFW MIA 19:00 21:30

395 MIA DFW 21:00 23:43

…

31

-Join Example (cont)

Flight1.Dest = Flight2.Origin  Flight1.Arr_Time < Flight2.Dept_Time

Flight1.

Num

Flight1.

Origin

Flight1

.Dest

Flight1.De

p_Time

Flight1.Ar

r_Time

Flight2_

1.Num

Flight2.Or

igin

Flight2.

Dest

Flight2.Dep

_Time

Flight2.Arr_

Time

334 ORD MIA 12:00 14:14 335 MIA ORD 15:00 17:14

335 MIA ORD 15:00 17:14 336 ORD MIA 18:00 20:14

336 ORD MIA 18:00 20:14 337 MIA ORD 20:30 23:53

334 ORD MIA 12:00 14:14 337 MIA ORD 20:30 23:53

336 ORD MIA 18:00 20:14 395 MIA DFW 21:00 23:43

334 ORD MIA 12:00 14:14 395 MIA DFW 21:00 23:43

What happens if we add the condition Flight1.Origin  Flight2.Dest

32

Renaming 

• If attributes or relations have the same name it may be convenient to rename one

(R’(N1 -> N’1, Nn -> N’n), R)

• The new relation R’ has the same instance as R, but its schema has attribute N’i
instead of attribute Ni

• Example: (Staff(Name -> Family_Name, Salary -> Gross_salary), Employee)

• Necessary if we need to perform a cartesian product or join of a table with itself

Name Salary Emp_No

Clark 150000 1006

Gates 5000000 1005

Jones 50000 1001

Peters 45000 1002

Phillips 25000 1004

Rowe 35000 1003

Warnock 500000 1007

Family_Name Gross_Salary Emp_No

Clark 150000 1006

Gates 5000000 1005

Jones 50000 1001

Peters 45000 1002

Phillips 25000 1004

Rowe 35000 1003

Warnock 500000 1007

Employee Staff

33

Division

Let A have two fields x and y

Let B have one field y

A/B contains all x tuples, such that for every y tuple in B there
is a xy tuple in A

x y

s1 p1

s1 p2

s1 p3

s1 p4

s2 p1

s2 p2

s3 p2

s4 p2

s4 p4

A

p4

p2

y

B

s4

s1

x
A/B/ =

34

Example Division

Find the Employment numbers of the pilots who can fly all MD planes

Can_Fly / Model_No(Maker=‘MD’Plane)

Emp_No

1003

Emp_No Model_No

1001 B727

1001 B747

1001 DC10

1002 A320

1002 A340

1002 B757

1002 DC9

1003 A310

1003 DC9

Maker Model_No

Airbus A310

Airbus A320

Airbus A330

Airbus A340

Boeing B727

Boeing B747

Boeing B757

MD DC10

MD DC9
1003 DC10

35

Additional Operators - Outer Join

• An extension of the join operation that avoids loss of
information.

• Computes the join and then adds tuples from one
relation that do not match tuples in the other relation
to the result of the join.

• Uses null values in left- or right- outer join:

– null signifies that the value is unknown or does
not exist.

– All comparisons involving null are false by
definition.

36

Outer Join - Example

loan

branch-name loan-number amount

Downtown

Redwood

Perryridge

L-170

L-260

L-230

3000

1700

4000

borrower

cust-name loan-number

Jones

Hayes

Smith

L-170

L-230

L-155

branch-name loan-number amount

Downtown

Redwood

L-170

L-230

3000

4000

cust-name

Jones

Smith

Loan Borrower

Join returns only the matching (or “good”) tuples
The fact that loan L-260 has no borrower is not explicit in the result
Hayes has borrowed an non-existent loan L-155 is also undetected

37

Left Outer Join -Example

Left outer join: Loan borrower

Keep the entire left relation (Loan) and fill in information
from the right relation, use null if information is missing.

branch-name loan-number amount

Downtown

Redwood

Perryridge

L-170

L-260

L-230

3000

1700

4000

cust-name

Jones

Smith

null

38

Right and Full Outer Join - example

Loan Borrower

Loan borrower

branch-name

Downtown

null

Redwood

amount

3000

4000

null

cust-name loan-number

Jones

Hayes

Smith

L-170

L-230

L-155

branch-name

Downtown

Perryridge

Redwood

amount

3000

4000

1700

cust-name loan-number

Jones

null

Smith

L-170

L-230

L-260

null Hayes L-155null

