Lecture 19: NP-Completeness

Outline of this Lecture

- Polynomial-time reductions.

CLRS pp.984-5

- The class $\mathcal{N} \mathcal{P C}$.

CLRS p. 986

- Proving that problems are $\mathcal{N P C}$.

SAT, CLIQUE, INDEPENDENT SET, VERTEX COVER CLRS pp. 995-1007

- Optimization vs. Decision problems

Reductions between Decision Problems

What is Reduction?

Let L_{1} and L_{2} be two decision problems.

Suppose algorithm A_{2} solves L_{2}. That is, if y is an input for L_{2} then algorithm A_{2} will answer Yes or No depending upon whether $y \in L_{2}$ or not.

The idea is to find a transformation f from L_{1} to L_{2} so that the algorithm A_{2} can be part of an algorithm A_{1} to solve L_{1}.

Algorithm for L1

Polynomial-Time Reductions

Definition: A Polynomial-Time Reduction from L_{1} to L_{2} is a transformation f with the following properties:

- f transforms
an input x for L_{1} into an input $f(x)$ for L_{2} s.t.
$f(x)$ is a yes-input for L_{2} if and only if x is a yesinput for L_{1}.

We require a yes-input of L_{1} maps to a yes-input of L_{2}, and a no-input of L_{1} maps to a no-input of L_{2}.

Polynomial-Time Reductions

- $f(x)$ is computable in polynomial time (in size (x)).

If such an f exists, we say that
L_{1} is polynomial-time reducible to L_{2},
and write $L_{1} \leq_{P} L_{2}$.

Polynomial-Time Reductions

Question: What can we do with a polynomial time reduction $f: L_{1} \rightarrow L_{2}$?

Answer: Given an algorithm A_{2} for the decision problem L_{2}, we can develop an algorithm A_{1} to solve L_{1}.

In particular (proof on next slide)
if A_{2} is a polynomial time algorithm for L_{2} and $L_{1} \leq_{P} L_{2}$ then we can construct a polynomial time algorithm for L_{1}.

Algorithm for L1

Polynomial-Time Reduction $f: L_{1} \rightarrow L_{2}$

Theorem:

If $L_{1} \leq_{P} L_{2}$ and $L_{2} \in \mathcal{P}$, then $L_{1} \in \mathcal{P}$.

Proof: $L_{2} \in \mathcal{P}$ means that we have a polynomialtime algorithm A_{2} for L_{2}. Since $L_{1} \leq_{P} L_{2}$, we have a polynomial-time transformation f mapping input x for L_{1} to an input for L_{2}. Combining these, we get the following polynomial-time algorithm for solving L_{1} :
(1) take input x for L_{1} and compute $f(x)$;
(2) run A_{2} on input $f(x)$, and return the answer found (for L_{2} on $f(x)$) as the answer for L_{1} on x.

Each of Steps (1) and (2) takes polynomial time. So the combined algorithm takes polynomial time. Hence $L_{1} \in \mathcal{P}$.

Warning

We have just seen

Theorem:

If $L_{1} \leq_{P} L_{2}$ and $L_{2} \in \mathcal{P}$, then $L_{1} \in \mathcal{P}$.

Note that this does not imply that
If $L_{1} \leq_{P} L_{2}$ and $L_{1} \in \mathcal{P}$, then $L_{2} \in \mathcal{P}$.
This statement is not true.

Reduction between Decision Problems

Lemma (Transitivity of the relation \leq_{P}): If $L_{1} \leq_{P} L_{2}$ and $L_{2} \leq_{P} L_{3}$, then $L_{1} \leq_{P} L_{3}$.

Proof: Since $L_{1} \leq_{P} L_{2}$, there is a polynomial-time reduction f_{1} from L_{1} to L_{2}.
Similarly, since $L_{2} \leq_{P} L_{3}$ there is a polynomial-time reduction f_{2} from L_{2} to L_{3}.

Note that $f_{1}(x)$ can be calculated in time polynomial in size (x).
In particular this implies that $\operatorname{size}\left(f_{1}(x)\right)$ is polynomial in size (x).
$f(x)=f_{2}\left(f_{1}(x)\right)$ can therefore be calculated in time polynomial in size (x).

Furthermore x is a yes-input for L_{1} if and only if $f(x)$ is a yes-input for L_{3} (why). Thus the combined transformation defined by

$$
f(x)=f_{2}\left(f_{1}(x)\right)
$$

is a polynomial-time reduction from L_{1} to L_{3}. Hence $L_{1} \leq_{P} L_{3}$.

Finally: The Class $\mathcal{N} \mathcal{P}$-Complete $(\mathcal{N P C})$

We have finally reached our goal of introducing class $\mathcal{N P C}$.

Definition: The class $\mathcal{N P C}$ of $\mathcal{N P}$-complete problems consists of all decision problems L such that
(a) $L \in \mathcal{N P}$;
(b) for every $L^{\prime} \in \mathcal{N P}, L^{\prime} \leq_{P} L$.

Intuitively, $\mathcal{N P C}$ consists of all the hardest problems in $\mathcal{N P}$.

$\mathcal{N} \mathcal{P}$-Completeness and Its Properties

The major reason we are interested in NP-Completeness is the following theorem which states that either all $\mathcal{N P}$-Complete problems are polynomial time solvable or all $\mathcal{N P}$-Complete problemsare not polynomial time solvable.

Theorem: Suppose that L is $\mathcal{N P C}$.

- If there is a polynomial-time algorithm for L, then there is a polynomial-time algorithm for every $L^{\prime} \in$ $\mathcal{N P}$.

Proof: By the theorem on Page 5.

- If there is no polynomial-time algorithm for L, then there is no polynomial-time algorithm for any $L^{\prime} \in$ $\mathcal{N P C}$.

Proof: By the previous conclusion.

The Classes $\mathcal{P}, \mathcal{N} \mathcal{P}$, co- $\mathcal{N} \mathcal{P}$, and $\mathcal{N P} \mathcal{C}$

Proposition: $\mathcal{P} \subseteq \mathcal{N} \mathcal{P}$.
Simple proof omitted

Question 1: Is $\mathcal{N P C} \subseteq \mathcal{N} \mathcal{P}$?
Yes, by definition!

Question 2: Is $\mathcal{P}=\mathcal{N} \mathcal{P}$?
Open problem! Probably very hard It is generally believed that $\mathcal{P} \neq \mathcal{N} \mathcal{P}$.
Proving this (or the opposite) would win you the US\$1,000,000 Clay Prize.

Question 3: Is $\mathcal{N P}=\mathrm{co}-\mathcal{N} \mathcal{P}$?
Open problem! Probably also very hard Note: if $\mathcal{N P} \neq \operatorname{co}-\mathcal{N} \mathcal{P}$, then $\mathcal{P} \neq \mathcal{N P}$ (why?).

The Class $\mathcal{N} \mathcal{P}$-Complete $(\mathcal{N P C})$

Given the transitivity property of the relation \leq_{p}, we have an alternative way to show that a decision $L \in$ $\mathcal{N P C}$:
(a) $L \in \mathcal{N P}$;
(b) for some $L^{\prime} \in \mathcal{N P C}, L^{\prime} \leq_{P} L$.

Cook's Theorem (SAT $\in \mathcal{N P C}$)

Unfortunately, it appears impossible to find one problem $L \in \mathcal{N P C}$. By definition, it requires us to show every $L^{\prime} \in \mathcal{N P}, L^{\prime} \leq_{P} L$. But there are infinitely many problem in $N P$, so how can we argue there exists a reduction for every L^{\prime} to L ?

Cook's Theorem (1971): SAT $\in \mathcal{N P C}$. (For a proof, see pp. 997-998 of the textbook.)

Remark: Since Cook showed that SAT $\in \mathcal{N P C}$, thousands of problems have been shown to be in $\mathcal{N P C}$ using the reduction approach described earlier.

Remark: With a little more work we can also show that $3-\mathrm{CNF}-\mathrm{SAT} \in \mathcal{N P C}$ as well. pp. 998-1002.

Note: For the purposes of this course you only need to know the validity of Cook's Theorem, and 3 -CNF-SAT $\in \mathcal{N P} \mathcal{P C}$ but do not need to know how to prove they are correct.

Proving that problems are $\mathcal{N P C}$

In the rest of this lecture we will discuss some specific $\mathcal{N} \mathcal{P}$-Complete problems.

1. SATand $3-C N F-S A T$.

We will assume that they are $\mathcal{N P}$-Complete. (From textbook)
2. DCLIQUE:
by showing 3 - CNF - SAT \leq_{p} DCLIQUE The reduction used is very unexpected!
3. Decision Vertex Cover DVC: by showing DCLIQUE \leq_{p} DVC The reduction used is very natural.
4. Decision Independent Set (DIS): by showing DVC \leq_{P} IS
The reduction used is very natural.

Problem: CLIQUE

Clique: A clique in an undirected graph $G=(V, E)$ is a subset $V^{\prime} \subseteq V$ of vertices such that each pair $u, v \in V^{\prime}$ is connected by an edge $(u, v) \in E$. In other words, a clique is a complete subgraph of G (a vertex is a clique of size 1 , an edge a clique of size 2).

Find a clique with 4 vertices

CLIQUE: Find a clique of maximum size in a graph.

$\mathcal{N P C}$ Problem: DCLIQUE

The Decision Clique Problem (DCLIQUE): Given an undirected graph G and an integer k, determine whether G has a clique with k vertices.

Find a clique with 4 vertices

Theorem: DCLIQUE $\in \mathcal{N} \mathcal{P C}$.

Proof: We need to show two things.
(a) That DCLIQUE $\in \mathcal{N P}$ and
(b) That there is some $L \in \mathcal{N P C}$ such that

$$
L \leq_{P} \text { DCLIQUE. }
$$

Proof that DCLIQUE $\in \mathcal{N P} \mathcal{C}$

Theorem: DCLIQUE $\in \mathcal{N} \mathcal{P C}$.
Proof: We need to show two things.
(a) That DCLIQUE $\in \mathcal{N} \mathcal{P}$ and
(b) That there is some $L \in \mathcal{N P C}$ such that

$$
L \leq_{P} \text { DCLIQUE. }
$$

Proving (a) is easy. A certificate will be a set of vertices $V^{\prime} \subseteq V,\left|V^{\prime}\right|=k$ that is a possible clique. To check that V^{\prime} is a clique all that is needed is to check that all edges (u, v) with $u \neq v, u, v \in V^{\prime}$, are in E. This can be done in time $O\left(|V|^{2}\right)$ if the edges are kept in an adjacency matrix (and even if they are kept in an adjacency list - how?).

To prove (b) we will show that 3 - CNF - SAT \leq_{p} DCLIQUE.
This will be the hard part.
We will do this by building a 'gadget' that allows a reduction from the $3-$ CNF - SAT problem (on logical formulas) to the DCLIQUE problem (on graphs, and integers).

Proof that DCLIQUE $\in \mathcal{N P C}$ (cont)

Recall (from Lecture 18) that the input to $3-$ CNF - SAT is a logical formula ϕ of the form

$$
\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}
$$

where each C_{i} is of the form

$$
C_{i}=y_{i, 1} \vee y_{i, 2} \vee y_{i, 3}
$$

where each $y_{i, j}$ is a variable or the negation of a variable.

As an example

$$
C_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right), C_{2}=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right), C_{3}=\left(x_{1} \vee x_{2} \vee x_{3}\right)
$$

We will define a polynomial transformation f from 3 - CNF - SAT to DCLIQUE

$$
f: \phi \mapsto(G, k)
$$

that builds a graph G and integer k such that ϕ is a Yes-input to 3 - CNF - SAT if and only if (G, k) is a Yes-input to DCLIQUE.

Proof that DCLIQUE $\in \mathcal{N P C}$ (cont)

Suppose that ϕ is a $3-$ CNF - SAT formula with n clauses, i.e., $\phi=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{n}$. We start by setting $k=n$.
We now construct graph $G=(V, E)$.
(I) For each clause $C_{i}=x_{i, 1} \vee x_{i, 2} \vee x_{i, 3}$ we create 3 vertices, $v_{1}^{i}, v_{2}^{i}, v_{3}^{i}$, in V so G has $3 n$ vertices. We will label these vertices with the corresponding variable or variable negation that they represent. (Note that many vertices might share the same label)
(II) We create an edge between vertices v_{j}^{i} and $v_{j^{\prime}}^{i^{\prime}}$, if and only if the following two conditions hold:
(a) v_{j}^{i} and $v_{j^{\prime}}^{i^{\prime}}$ are in different triples, i.e., $i \neq i^{\prime}$, and (b) v_{j}^{i} is not the negation of $v_{j^{\prime}}^{i^{\prime}}$.

Note that the transformation maps all 3-CNF-SAT inputs to some DCLIQUE inputs, i.e., it does not require all DCLIQUE inputs have pre-images from 3-CNF-SAT inputs.

Proof that DCLIQUE $\in \mathcal{N P C}$ (cont)

Here is a formula $\phi=C_{1} \wedge C_{2} \wedge C_{3}$ and its corresponding graph:

$$
C_{1}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right), C_{2}=\left(\neg x_{1} \vee x_{2} \vee x_{3}\right), C_{3}=\left(x_{1} \vee x_{2} \vee x_{3}\right)
$$

Note that the assignment $X_{1}=T, X_{2}=F, X_{3}=T$ satisfies ϕ (a yes-input for 3-CNF-SAT). This corresponds to the clique of size 3 comprising the $\neg x_{2}$ node in C_{1}, the x_{3} node in C_{2}, and the x_{3} node in C_{3} (a yes-input for DCLIQUE).

Proof that DCLIQUE $\in \mathcal{N P C}$ (cont)

We claim that a 3 - CNF formula ϕ with k clauses is satisfiable if and only if $f(\phi)=(G, k)$ has a clique of size k.
$Y \Rightarrow Y:$ If ϕ is satisfiable, then in each k clause, there must be at least one true literal. Let the true literal in each clause be $\underbrace{\left(x_{i}, \neg x_{j}, \ldots, \neg x_{w}\right)}$. Observe k literals the true literals must be consistence to each others, i.e., for any $i, x_{i}, \neg x_{i}$ will not appear together in the true assignment. The corresponding k vertices ($x_{i}, \neg x_{j}, \ldots, \neg x_{w}$) will form a complete subgraph (a clique) in G. Since in our construction of G, every vertex will be connected to other vertex if they are logically consistent. Since, for any i, x_{i} and $\neg x_{i}$ will not appear together in the vertex list, every vertex in the list must be connected by an edge forming a complete subgraph (clique) of size k.

Proof that DCLIQUE $\in \mathcal{N P C}$ (cont)

$Y \Leftarrow Y$: Suppose G has a clique of size k. Observe that there is no edge between vertices in the same clause. Hence, each one clause 'contributes' exactly one vertex to the clique. Moreover, since other logically consistent vertex will be connected by a edge, every vertex in the clique must be logically consistent. Hence, those vertices in the clqiue is a true assignment which makes ϕ satisfiable.

Proof that DCLIQUE $\in \mathcal{N P C}$ (cont)

Note that the graph G has $3 k$ vertices and at most $3 k(3 k-1) / 2$ edges and can be built in $O\left(k^{2}\right)$ time so f is a Polynomial-time reduction.

We have therefore just proven that

$$
3 \text { - CNF } \leq_{P} \text { DCLIQUE. }
$$

Since we already know that $3-\mathrm{CNF} \in \mathcal{N P C}$ and have seen that DCLIQUE $\in \mathcal{N P}$ we have just proven that DCLIQUE $\in \mathcal{N P C}$.

Problem: VC

Vertex Cover: A vertex cover of G is a set of vertices such that every edge in G is incident to at least one of these vertices.

Find a vertex cover of G of size two

The Vertex Cover Problem (VC): Given a graph G, find a vertex cover of G of minimum size.

$\mathcal{N P C}$ Problem: DVC

The Decision Vertex Cover Problem (DVC): Given a graph G and integer k, determine whether G has a vertex cover with k vertices.

Find a vertex cover of G of size two

Theorem: DVC $\in \mathcal{N} \mathcal{P C}$.

Proof: In Lecture 18, we showed that $\operatorname{DVC} \in \mathcal{N} \mathcal{P}$.

We show that DCLIQUE \leq_{P} DVC. The conclusion then follows from the fact that DCLIQUE $\in \mathcal{N P} \mathcal{C}$. A proof of DCLIQUE \leq_{P} DVC will be given in the next few slides.

DVC $\in \mathcal{N P C}$: Complement of a Graph

The complement of a graph $G=(V, E)$ is defined by $\bar{G}=(V, \bar{E})$, where

$$
\bar{E}=\{(u, v) \mid u, v \in V, u \neq v,(u, v) \notin E\} .
$$

Graph G

Complement of G

Proof: DVC $\in \mathcal{N P C}$

Let $k^{\prime}=|V|-k$. We define a transformation f from DCLIQUE to DVC:

$$
f:(G=(V, E), k) \mapsto\left(\bar{G}=\left(V, \bar{E}, k^{\prime}\right)\right.
$$

- f can be computed (that is, \bar{G} and k^{\prime} can be determined) in time $O\left(|V|^{2}\right)$ time .
- We claim that A graph G has a clique of size k (yes-input of DCLIQUE) if and only if the complement graph \bar{G} has a vertex cover of size $|V|-k$ (a yes-input of DVC).

DVC $\in \mathcal{N P C}$: Transformation

$Y \Rightarrow Y:$ Let V^{\prime} be a clique of size k in G, then in \bar{G}, there is no edge between any two vertices $\in V^{\prime}$. Hence $V^{\prime \prime}=V \backslash V^{\prime}($ size $=|V|-k)$ is a VC in \bar{G}.
$Y \Leftarrow Y$: Let V^{\prime} be a VC $($ size $=|V|-k)$ of \bar{G}, and let $V^{\prime \prime}=V \backslash V^{\prime}$, where $\left|V^{\prime \prime}\right|=k$. By the definition of VC , if any $u, v \in V^{\prime},(u, v) \notin \bar{E}$. Hence, for any $u, v \in V^{\prime \prime},(u, v) \in E$. Therefore $V^{\prime \prime}$ is a clique of size k in G.

Problem: Independent Set

Definition: An independent set is a subset I of vertices in an undirected graph G such that no pair of vertices in I is joined by an edge of G.

$\mathcal{N} \mathcal{P C}$ Problem: Decision Independent Set (DIS)

Optimization Problem: Given an undirected graph G, find an independent set of maximum size.

Decision Problem (DIS): Given an undirected graph G and an integer k, does G contain an independent set consisting of k vertices?

Theorem: DVC $\in \mathcal{N} \mathcal{P C}$.

Proof: It is very easy to see that DIS $\in \mathcal{N P}$. A certificate is a set of vertices $S \subseteq V$ and, in $O\left(|S|^{2}\right)=$ $O\left(|V|^{2}\right)$ time we can check whether or not S is an independent set. In the next slide we will see that DCLIQUE \leq_{p} DIS, completing the proof.

DIS $\in \mathcal{N P C}$

We can define a transformation from DCLIQUE to DIS:

$$
f:(G=(V, E), k) \mapsto(\bar{G}=(V, \bar{E}), k)
$$

We claim (G, k) is a Yes-input to DCLIQUE if and only if (\bar{G}, k) is a Yes-input to DIS.
$Y \Rightarrow Y$: Let V^{\prime} be a clique of size k of G. Hence in \bar{G}, there is no edge between any vertex in V^{\prime} which means $V^{\prime}($ size $=k)$ is a IS of \bar{G}.
$Y \Leftarrow Y$: Let V^{\prime} be a IS of size k in \bar{G}. Hence in G, every vertex in V^{\prime} be be connected by an edge. Hence $V^{\prime}($ size $=k)$ is a clique of G.

Moreover, f can be calculated in polynomial time we have just shown that DCLIQUE \leq_{P} DIS and completed the proof that DIS $\in \mathcal{N P C}$.

Decision versus Optimization Problems

The theory of $\mathcal{N P}$-Completeness revolves around decision problems. It was set up this way because it's easier to compare the difficulty of decision problems than that of optimization problems.

At first glance, this might seem unhelpful since we usually don't care at all about decision problems. We're interested in finding an optimal solution to our problem (the optimization version) not whether such a solution exists (decision version).

In reality, though, being able to solve a decision problem in polynomial time will often permit us to solve the corresponding optimization problem in polynomial time (using a polynomial number of calls to the decision problem). So, discussing the difficulty of decision problems is often really equivalent to discussing the difficulty of optimization problems.

In the next two slides we see an example of this phenomenon for VERTEX COVER by showing that having a polynomial algorithm for Decision Vertex Cover (DVC) would yield a polynomial algorithm for fi nding a minimal Vertex Cover.

Decision versus Optimization Problems (cont)

Here are the two problems and third related one
VC: Given undirected graph G find a minimal size vertex cover.
DVC: Given undirected graph G and k, is there a vertex cover of size k ?
MVC: Given an undirected graph G, find the size of a minimal vertex cover.

Suppose that $D V C(G, k)$ returns Yes if G has a vertex cover of size k and No, otherwise.

Consider the following algorithm for solving MVC:
$k=0$;
while ($\operatorname{not} \operatorname{DVC}(G, k)) k=k+1$; return (k);

Note that MVC calls $D V C$ at most $|V|$ times so, if there is a polynomial time algorithm for DVC, then our algorithm for MVC is also polynomial.

Decision versus Optimization Problems (cont)

Here is an algorithm for calculating $V C(G)$ that uses the algorithm for MVC on the previous page. First set $k=M V C(G)$ and then run $V C(G, k)$ which is defined by:
// find a VC of size t VC (G, t)
\{
// Let G_u be a graph such that the
// vertex u, and its corresponding edges
// are removed from G.
// We then find the a vertex u such that
if (MVC(G_u)==1) output u;
// such u must exist, why?
if (t > 1) VC(G_u, t-1);
\}
(Show why the output vertices is a $V C$ of G.)

Decision versus Optimization Problems (cont)

Note that this algorithm calls MVC at most $|V|^{2}$ times so, if MVC is polynomial in $\operatorname{size}(G)$, then so is $V C$. We already saw that if DVC is polynomial in $\operatorname{size}(G)$ so is $M V C$, so we've just shown that if we can solve $D V C$ in polynomial time, we can solve $V C$ in polynomial time.

NP-Hard Problems

A problem L is $\mathcal{N} \mathcal{P}$-hard if some problem in $\mathcal{N} \mathcal{P C}$ can be polynomially reduced to it (but L does not need to be in $\mathcal{N P}$).

In general, the Optimization versions of $\mathcal{N P}$-Complete problems are $\mathcal{N} \mathcal{P}$-Hard.

For example, recall
VC: Given undirected graph G find a minimal size vertex cover.
DVC: Given undirected graph G and k, is there a vertex cover of size k ?

If we can solve the optimization problem VC we can easily solve the decision problem DVC. Simply run VC on graph G and find a minimal vertex cover S. Now, given (G, k), solve $D V C(G, k)$ by checking whether $k \geq|S|$. If $k \geq|S|$ answer Yes, if not, answer No.

A List of $\mathcal{N P C}$ Problems Covered

Satisfiability of Boolean formulas (SAT)
Decision clique (DCLIQUE)
Decision vertex cover (DVC)
Decision independent set (DIS)

Remark: Several thousand decision problems have been shown to be in $\mathcal{N P C}$.

A Review on $\mathcal{N} \mathcal{P}$-Completeness

Input size of problems.
Polynomial-time and nonpolynomial-time algorithms.
Polynomial-time solvable problems.

Decision problems.

Optimization problems and their decision problems.

The classes $\mathcal{P}, \mathcal{N} \mathcal{P}, \operatorname{co}-\mathcal{N} \mathcal{P}$, and $\mathcal{N} \mathcal{P C}$.
Polynomial-time reduction.

How to prove $L \in \mathcal{P}$, or $\mathcal{N P}$, or $\mathcal{N P C}$?

Examples of problems in the classes.

