
Lecture 19: NP-Completeness

Outline of this Lecture

� Polynomial-time reductions.
CLRS pp.984-5

� The class
� � �

.
CLRS p. 986

� Proving that problems are
� � �

.
SAT, CLIQUE, INDEPENDENT SET, VERTEX COVER
CLRS pp. 995-1007

� Optimization vs. Decision problems
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Reductions between Decision Problems

What is Reduction?
Let � � and ��� be two decision problems.

Suppose algorithm � � solves � � . That is, if � is an
input for ��� then algorithm � � will answer Yes or No
depending upon whether � � ��� or not.

The idea is to find a transformation � from � � to � �
so that the algorithm � � can be part of an algorithm
� � to solve � � .

Transform
f

algorithmf(x)
input 
for L2for L1

input
x yes/no

answer
for L2
on f(x)

yes/no
answer
for L1
on x

Algorithm for L1

for L2
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Polynomial-Time Reductions

Definition: A Polynomial-Time Reduction from � � to
� � is a transformation � with the following properties:

� � transforms
an input � for � � into an input � � ��� for � � s.t.

� � ��� is a yes-input for � � if and only if � is a yes-
input for � � .

f

N N

YY

1L L2

We require a yes-input of � � maps to a yes-input of
� � , and a no-input of � � maps to a no-input of ��� .
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Polynomial-Time Reductions

� � � ��� is computable in polynomial time (in � ����� � ��� ).

If such an � exists, we say that
� � is polynomial-time reducible to ��� ,

and write � � � � � � .
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Polynomial-Time Reductions

Question: What can we do with a polynomial time
reduction � � � � � ��� ?

Answer: Given an algorithm � � for the decision prob-
lem ��� , we can develop an algorithm � � to solve � � .

In particular (proof on next slide)
if ��� is a polynomial time algorithm for ��� and ���
	�� ��
then we can construct a polynomial time algorithm for
� � .

Transform
f

algorithmf(x)
input 
for L2for L1

input
x yes/no

answer
for L2
on f(x)

yes/no
answer
for L1
on x

Algorithm for L1

for L2
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Polynomial-Time Reduction � � � � � � �

Theorem:
If � � � � ��� and � � � �

, then � � � �
.

Proof: � � � �
means that we have a polynomial-

time algorithm � � for ��� . Since � � � � � � , we have
a polynomial-time transformation � mapping input �

for � � to an input for � � . Combining these, we get the
following polynomial-time algorithm for solving � � :

(1) take input � for � � and compute � � ��� ;

(2) run � � on input � � � � , and return the answer found
(for ��� on � � ��� ) as the answer for � � on � .

Each of Steps (1) and (2) takes polynomial time. So
the combined algorithm takes polynomial time. Hence
� � � �

.
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Warning

We have just seen

Theorem:
If � � � � � � and � � � �

, then � � � �
.

Note that this does not imply that
If � � � � � � and � � � �

, then � � � �
.

This statement is not true.

7



Reduction between Decision Problems

Lemma (Transitivity of the relation � � ):
If � � � � � � and � � � � ��� , then � � � � ��� .

Proof: Since � � � � ��� , there is a polynomial-time
reduction � � from � � to ��� .
Similarly, since � � � � � � there is a polynomial-time
reduction � � from ��� to � � .

Note that � � � ��� can be calculated in time polynomial
in � ��� � � � ���
In particular this implies that � ����� � � � � ��� � is polyno-
mial in � ����� � �����
� � ��� � � � � � � � � � � can therefore be calculated in time
polynomial in � ����� � �����

Furthermore � is a yes-input for � � if and only if � � � �
is a yes-input for � � (why). Thus the combined trans-
formation defined by

� � ��� � � � � � � � ��� �
is a polynomial-time reduction from � � to � � .
Hence � � � � � � .
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Finally: The Class
� �

-Complete (
� � �

)

We have finally reached our goal of introducing class
� � �

.

Definition: The class
� � �

of
� �

-complete prob-
lems consists of all decision problems � such that

(a) � � � �
;

(b) for every �
�

� � �
, �

� � � � .

Intuitively,
� � �

consists of all the hardest problems
in

� �
.
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� �
-Completeness and Its Properties

The major reason we are interested in NP-Completeness
is the following theorem which states that either all

� �
-Complete problems are polynomial time solvable

or all
� �

-Complete problemsare not polynomial time
solvable.

Theorem: Suppose that � is
� � �

.

� If there is a polynomial-time algorithm for � , then
there is a polynomial-time algorithm for every �

�

�
� �

.

Proof: By the theorem on Page 5.

� If there is no polynomial-time algorithm for � , then
there is no polynomial-time algorithm for any �

�

�
� � �

.

Proof: By the previous conclusion.
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The Classes
�

,
� �

, co-
� �

, and
� � �

Proposition:
� � � �

.
Simple proof omitted

Question 1: Is
� � � � � �

?
Yes, by definition!

Question 2: Is
� � � �

?
Open problem! Probably very hard
It is generally believed that

� �� � �
.

Proving this (or the opposite) would win you the
US$1,000,000 Clay Prize.

Question 3: Is
� � � ����� � �

?
Open problem! Probably also very hard
Note: if

� � �� ����� � �
, then

� �� � �
(why?).
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The Class
� �

-Complete (
� � �

)

Given the transitivity property of the relation ��� , we
have an alternative way to show that a decision � �

� � �
:

(a) � � � �
;

(b) for some �
�

� � � �
, �

� � � � .
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Cook’s Theorem (SAT � � � �
)

Unfortunately, it appears impossible to find one prob-
lem � � � � �

. By definition, it requires us to show
every �

�
� � �

, �
� � � � . But there are infinitely

many problem in
� �

, so how can we argue there ex-
ists a reduction for every �

�
to � ?

Cook’s Theorem (1971): ����� � � � �
. (For a proof,

see pp. 997-998 of the textbook.)

Remark: Since Cook showed that ����� � � � �
,

thousands of problems have been shown to be in
� � �

using the reduction approach described earlier.

Remark: With a little more work we can also show
that 	 � 
 � � � ����� � � � �

as well. pp. 998-1002.

Note: For the purposes of this course you only need to know the

validity of Cook’s Theorem, and 3-CNF-SAT  � ��� but do not

need to know how to prove they are correct.
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Proving that problems are
� � �

In the rest of this lecture we will discuss some specific
� �

-Complete problems.

1. ����� and 3- 
 � � � ����� .
We will assume that they are

� �
-Complete. (From

textbook)

2. DCLIQUE:
by showing 	 � 
 � � � ����� � � � 
 ����� � �

The reduction used is very unexpected!

3. Decision Vertex Cover DVC:
by showing � 
 �	�
� � � � � � � 

The reduction used is very natural.

4. Decision Independent Set (DIS):
by showing � � 
 � � � �
The reduction used is very natural.
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Problem: CLIQUE

Clique: A clique in an undirected graph � � ������� �
is a subset

� � � �
of vertices such that each pair� �	� � � �

is connected by an edge
� � �	� � � �

. In
other words, a clique is a complete subgraph of � (a
vertex is a clique of size 1, an edge a clique of size 2).

1 2

3

4

5

Find a clique with 4 vertices

CLIQUE: Find a clique of maximum size in a graph.
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� � �
Problem: DCLIQUE

The Decision Clique Problem (DCLIQUE): Given an
undirected graph � and an integer � , determine whether
� has a clique with � vertices.

1 2

3

4

5

Find a clique with 4 vertices

Theorem: � 
 ����� � � � � � �
.

Proof: We need to show two things.
(a) That � 
 �	�
� � � � � �

and
(b) That there is some � � � � �

such that
� � � � 
 �	�
� � � �
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Proof that � 
 ����� � � � � � �

Theorem: � 
 ����� � � � � � �
.

Proof: We need to show two things.
(a) That � 
 �	�
� � � � � �

and
(b) That there is some � � � � �

such that
� � � � 
 �	�
� � � �

Proving (a) is easy. A certificate will be a set of ver-
tices

� � � � ��� � � � � � that is a possible clique. To
check that

� �

is a clique all that is needed is to check
that all edges

� � � � � with � �� � � � � � � � �

, are in� � This can be done in time �
��� � � � � if the edges are

kept in an adjacency matrix (and even if they are kept
in an adjacency list – how?).

To prove (b) we will show that
	 � 
 � � � ����� � � � 
 �	�
� � � �

This will be the hard part.
We will do this by building a ‘gadget’ that allows a re-
duction from the 	 � 
 � � � ����� problem (on logical
formulas) to the � 
 �	�
� � � problem (on graphs, and
integers).
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Proof that � 
 �	�
� � � � � � �
(cont)

Recall (from Lecture 18) that the input to 	 � 
 � � � �����
is a logical formula � of the form

� � � ��� � � � ������� �	�
where each ��
 is of the form

�	
 � � 
� ��� � 
� � � � 
� �
where each � 
��� is a variable or the negation of a vari-
able.

As an example����� ������������� �!����"$#�%&�'�(� �)���*�+�,���-�,��".#�%&�'"(� �/�*�+�0��� �0��"$#

We will define a polynomial transformation �
from 	 � 
 � � � ����� to � 
 ����� � �

� �(� 1� � � �
� �

that builds a graph � and integer � such that
� is a Yes-input to 	 � 
 � � � ����� if and only if� � �

� � is a Yes-input to � 
 ����� � � .
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Proof that � 
 �	�
� � � � � � �
(cont)

Suppose that � is a 	 � 
 � � � ����� formula with �

clauses, i.e., � � � � � � � � ����� � � � � We start by
setting � � � �

We now construct graph � � ����� � ���

(I) For each clause � 
 � � 
� �0� � 
� � � � 
� � we create 	
vertices,

� 

�
� � 

�
� � 

� , in

�
so � has 	�� vertices. We will

label these vertices with the corresponding variable or
variable negation that they represent. (Note that many
vertices might share the same label)

(II) We create an edge between vertices
� 
� and

� 
 �� � if
and only if the following two conditions hold:
(a)

� 
� and
� 
 �� � are in different triples, i.e.,

� �� � � �
and

(b)
� 
� is not the negation of

� 
 �� � .
Note that the transformation maps all 3-CNF-SAT in-
puts to some DCLIQUE inputs, i.e., it does not re-
quire all DCLIQUE inputs have pre-images from 3-
CNF-SAT inputs.
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Proof that � 
 �	�
� � � � � � �
(cont)

Here is a formula � � � � � � � � � � and its corre-
sponding graph:����� ������������� �!����"$#�%&�'�(� �)���*�+�,���-�,��".#�%&�'"(� �/�*�+�0��� �0��"$#

32

1

CC

C

1X X3X2

X1 1X

2X

3X 3X

2X

Note that the assignment
� � � � � � � � � � �

� � �

satisfies � (a yes-input for 3-CNF-SAT). This corre-
sponds to the clique of size 3 comprising the � � �
node in � � , the � � node in � � , and the � � node in� � (a yes-input for DCLIQUE).
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Proof that � 
 �	�
� � � � � � �
(cont)

We claim that a 	 � 
 � � formula � with � clauses is
satisfiable if and only if � � � � � � � �

� � has a clique of
size � .

� � �
� If � is satisfiable, then in each � clause,

there must be at least one true literal. Let the true
literal in each clause be

� � 
 � � � � � � � � � � ��� ���� ��� �
	 literals

Observe

the true literals must be consistence to each others,
i.e., for any

�
, � 
 � � � 
 will not appear together in the

true assignment. The corresponding � vertices
� � 
 � � � � � � � � � � ��� � will form a complete subgraph (a
clique) in � . Since in our construction of � , every ver-
tex will be connected to other vertex if they are logi-
cally consistent. Since, for any

�
, � 
 and � � 
 will not

appear together in the vertex list, every vertex in the
list must be connected by an edge forming a complete
subgraph (clique) of size � .
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Proof that � 
 �	�
� � � � � � �
(cont)

� � �
: Suppose � has a clique of size � . Observe

that there is no edge between vertices in the same
clause. Hence, each one clause ’contributes’ exactly
one vertex to the clique. Moreover, since other log-
ically consistent vertex will be connected by a edge,
every vertex in the clique must be logically consistent.
Hence, those vertices in the clqiue is a true assign-
ment which makes � satisfiable.
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Proof that � 
 �	�
� � � � � � �
(cont)

Note that the graph � has 	 � vertices and at most
	 �
�
	 � � � ����� edges and can be built in �

�
� � � time

so � is a Polynomial-time reduction.

We have therefore just proven that

	 � 
 � � � � � 
 ����� � � �

Since we already know that 	 � 
 � � � � � �
and

have seen that � 
 ����� � � � � �
we have just proven

that � 
 ����� � � � � � � �
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Problem: VC

Vertex Cover: A vertex cover of � is a set of vertices
such that every edge in � is incident to at least one of
these vertices.

a

b

c
d

e
f

Find a vertex cover of G 
of size two

The Vertex Cover Problem (VC): Given a graph � ,
find a vertex cover of � of minimum size.
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� � �
Problem: DVC

The Decision Vertex Cover Problem (DVC): Given
a graph � and integer � , determine whether � has a
vertex cover with � vertices.

a

b

c
d

e
f

Find a vertex cover of G 
of size two

Theorem: � � 
 � � � �
.

Proof: In Lecture 18, we showed that DVC � � �
.

We show that DCLIQUE � � DVC. The conclusion
then follows from the fact that � 
 ����� � � � � � �

.
A proof of DCLIQUE � � DVC will be given in the next
few slides.
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� � 
 � � � �
: Complement of a Graph

The complement of a graph � � ������� � is defined
by � � ������� � , where

� � � � � �	� � � � � � � � � � �� � � � � �	� � �� � � �

a

b

c

f

d

e a

b

c

d

e

f

Graph G Complement of G
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Proof: � � 
 � � � �

Let �
� � � � � � � . We define a transformation � from

DCLIQUE to DVC:

� �
� � � ��� �	� � � � � 1� � � � ��� ���� �

�
�
�

� � can be computed (that is, � and �
�
can be de-

termined) in time �
��� � � � � time .

� We claim that A graph � has a clique of size �
(yes-input of DCLIQUE) if and only if the comple-
ment graph � has a vertex cover of size

� � � � �
(a yes-input of DVC).
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� � 
 � � � �
: Transformation

� � �
� Let

� �
be a clique of size � in � , then in

�� , there is no edge between any two vertices � � �
.

Hence
� � � � � � � �

(size =
� � � � � ) is a VC in

�� .

� � �
� Let

� �

be a VC (size =
� � � � � ) of

�� , and
let

� � � � � � � �

, where
� � � � � � � . By the definition

of VC, if any � �	� � � �
,
� � �	� � �� ��

. Hence, for any� �	� � � � �
,
� � � � � � �

. Therefore
� � �

is a clique of
size � in � .
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Problem: Independent Set

Definition: An independent set is a subset � of ver-
tices in an undirected graph � such that no pair of
vertices in � is joined by an edge of � .

I

I

I
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� � �
Problem: Decision Independent Set (DIS)

Optimization Problem: Given an undirected graph
� , find an independent set of maximum size.

Decision Problem (DIS): Given an undirected graph
� and an integer � , does � contain an independent
set consisting of � vertices?

Theorem: � � 
 � � � �
.

Proof: It is very easy to see that DIS � � �
. A cer-

tificate is a set of vertices �
� �

and, in �
���

�
� � � �

�
��� � � � � time we can check whether or not � is an

independent set. In the next slide we will see that
� 
 ����� � � � � � � � , completing the proof.

I

I

I
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� � � � � � �

We can define a transformation from DCLIQUE to DIS:

� �
� � � ��� � � � � � � 1� � � � ����� �� � � � �

We claim
� � �

� � is a Yes-input to DCLIQUE if and only
if
� �� �

� � is a Yes-input to DIS.

� � �
� Let

� �
be a clique of size � of � . Hence in

�� , there is no edge between any vertex in
� �

which
means

� �
(size= � ) is a IS of

�� .

� � �
� Let

� �
be a IS of size � in

�� . Hence in
� , every vertex in

� �
be be connected by an edge.

Hence
� �

(size= � ) is a clique of � .

Moreover, � can be calculated in polynomial time we
have just shown that � 
 �	�
� � � � � � � � and com-
pleted the proof that � � � � � � �

.
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Decision versus Optimization Problems

The theory of
� �

-Completeness revolves around de-
cision problems. It was set up this way because it’s
easier to compare the difficulty of decision problems
than that of optimization problems.

At first glance, this might seem unhelpful since we
usually don’t care at all about decision problems. We’re
interested in finding an optimal solution to our problem
(the optimization version) not whether such a solution
exists (decision version).

In reality, though, being able to solve a decision prob-
lem in polynomial time will often permit us to solve
the corresponding optimization problem in polynomial
time (using a polynomial number of calls to the deci-
sion problem). So, discussing the difficulty of decision
problems is often really equivalent to discussing the
difficulty of optimization problems.

In the next two slides we see an example of this phenomenon

for VERTEX COVER by showing that having a polynomial algo-

rithm for Decision Vertex Cover (DVC) would yield a polynomial

algorithm for finding a minimal Vertex Cover.
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Decision versus Optimization Problems (cont)

Here are the two problems and third related one

VC: Given undirected graph � find a minimal size ver-
tex cover.
DVC: Given undirected graph � and � , is there a ver-
tex cover of size � ?
MVC: Given an undirected graph � , find the size of a
minimal vertex cover.

Suppose that � � � � � �
� � returns Yes if � has a ver-

tex cover of size � and No, otherwise.

Consider the following algorithm for solving MVC:

� � � ;
while (not DVC( � �

� )) � � � � � ;
return( � );

Note that MVC calls � � � at most
� � �

times so, if
there is a polynomial time algorithm for DVC, then our
algorithm for MVC is also polynomial.
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Decision versus Optimization Problems (cont)

Here is an algorithm for calculating
� � � � � that uses

the algorithm for MVC on the previous page. First set
� � � � � � � � and then run

� � � � �
� � which is de-

fined by:

// find a VC of size t
VC(G, t)
{
// Let G_u be a graph such that the
// vertex u, and its corresponding edges
// are removed from G.
// We then find the a vertex u such that
if (MVC(G_u)==1) output u;
// such u must exist, why?

if (t > 1) VC(G_u, t-1);
}

(Show why the output vertices is a
� � of � .)
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Decision versus Optimization Problems (cont)

Note that this algorithm calls MVC at most
� � � � times

so, if MVC is polynomial in � ��� � � � � � then so is
� � �

We already saw that if DVC is polynomial in � ����� � � �
so is � � � �

so we’ve just shown that if we can solve
� � � in polynomial time, we can solve

� � in polyno-
mial time.

35



NP-Hard Problems

A problem � is
� �

-hard if some problem in
� � �

can be polynomially reduced to it (but � does not need
to be in

� �
).

In general, the Optimization versions of
� �

-Complete
problems are

� �
-Hard.

For example, recall
VC: Given undirected graph � find a minimal size ver-
tex cover.
DVC: Given undirected graph � and � , is there a ver-
tex cover of size � ?

If we can solve the optimization problem VC we can
easily solve the decision problem DVC. Simply run VC
on graph � and find a minimal vertex cover � . Now,
given

� � �
� � , solve � � � � � �

� � by checking whether
� � �

�
� � If � � �

�
�
answer Yes, if not, answer No.
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A List of
� � �

Problems Covered

Satisfiability of Boolean formulas (SAT)
Decision clique (DCLIQUE)
Decision vertex cover (DVC)
Decision independent set (DIS)

Remark: Several thousand decision problems have
been shown to be in

� � �
.
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A Review on
� �

-Completeness

Input size of problems.

Polynomial-time and nonpolynomial-time algorithms.

Polynomial-time solvable problems.

Decision problems.

Optimization problems and their decision problems.

The classes
�

,
� �

, co-
� �

, and
� � �

.

Polynomial-time reduction.

How to prove � � �
, or

� �
, or

� � �
?

Examples of problems in the classes.
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