
Lecture 18: P & NP

CLRS, pp.966-982

The course so far: techniques for designing efficient
algorithms, e.g., divide-and-conquer, dynamic-programming,
greedy-algorithms.

What happens if you can’t find an efficient algorithm?
Is it your “fault” or the problem’s?

Showing that a problem has an efficient algorithm is,
relatively, easy. “All’ that is needed is to demonstrate
an algorithm.

Proving that no efficient algorithm exists for a partic-
ular problem is difficult. How can we prove the non-
existence of something?

We will now learn about NP Complete Problems, which
provide us with a way to approach this question.

1

NP-Complete Problems

This is a very large class of thousands of practical
problems for which

� it is not known if the problems have “efficient” solutions

� it is known that if any one of the NP-Complete Problems has
an efficient solution then all of the NP-Complete Problems
have efficient solutions

� researchers have spent innumerable man-years trying to
find efficient solutions to these problems and failing

� there is a large body of tools that often permit us to prove
when a new problem is NP-complete.

� The problem of finding an efficient solution to an NP-Complete
problem is known, in shorthand as

� �� � �
? . There is

currently a US$1,000,000 award offered by the Clay Insti-
tute (http://www.claymath.org/) for its solution.

2

In the remainder of the course we will introduce the
notation and terminology needed to properly discuss
NP-Complete problems and the tools required to prove
that problems are NP-complete.

Proving that a problem is NP-Complete does not prove
that the problem is hard. It does indicate that the prob-
lem is very likely to be hard.

Time permitting, we will also discuss what to do if you
find that the problem that you really need to solve is
NP-complete (other than giving up).

3

Contents of this Lecture

In this lecture we introduce the concepts that will per-
mit us to discuss whether a problem is ‘hard’ or ‘easy’.� �

-Complete problems themselves will not be intro-
duced until the next-lecture.

� Input size of problems.
Formalizes the idea of input size of problems to be the num-
ber of bits required to encode the problem. We also see
where we need to be precise and where we don’t.

� Optimization problems vs. decision problems.
Decision Problems have Yes/No answers.
Optimization Problems require answers that are optimal con-
figurations.
Decision problems are “easier” than optimization problems;
if we can show that a decision problem is hard that will imply
that its corresponding optimization problem is also hard.

� Polynomial time algorithms. The Class ���
� The Class � ���
� Problems in the two classes.

� The class �	��
�� � .

4

Encoding the Inputs of Problems

In order to formally discuss how hard a problem is, i.e.,
how much time it requires to solve as a function of its
input, we need to be much more formal than before
about the input size of a problem. We will therefore
spend some time now discussing how to encode the
inputs of problems.

Example: How do we encode graphs?

A graph � may be represented by its adjacency matrix� � �����	��

. � can then be encoded as the binary

string
���������������������������������� ������������������ ���

of length �
�
.

When the binary string is given, the computer can
count the number of bits and then determine � , the
vertices and the edges.

Remark: In general, the inputs of any problem can be
encoded as binary strings.

5

The Input Size of Problems

The input size of a problem may be defined in a num-
ber of ways.

Standard Definition: The input size of a problem is
the minimum number of bits (���������) needed to en-
code the input of the problem.

Remark: The exact input size 	 , (minimal number of bits) de-
termined by an optimal encoding method, is hard to compute in
most cases. However, for the complexity problems we will study,
we do not need to determine 	 exactly. See page 10 of these
slides for a more precise description.

For most problems, it is sufficient to choose some natural and

(usually) simple, encoding and use the size 	 of this encoding.

6

Input Size Example: Composite

Problem: Given a positive integer � , are there inte-
gers � ��� � � such that � � ��� ? (i.e., is � a compos-
ite number?)

Question:
What is the input size of this problem?

Answer: Any integer � � � can be represented in the
binary number system as:

� � ��
� �

� ��� �
where � � 	�
��� ��� � � ����� � �

and so be represented by the string
� � � � ����� � � of

length
	�
��� ��� � � ����� .

Therefore, a natural measure of input size is	�
��� ��� � � ����� (or just

��� � �).

7

Input Size Example: Sorting

Sorting problem: Sort � integers
� � � ����� � � � .

Question:
What is the input size of this problem?

Solution: Using fixed length encoding writes
� �

as
binary string of length

� � 	�
� � � � ��� ��� � � � � � ��� �

This coding gives input size � � �

8

Warning

Running times of algorithms, unless otherwise speci-
fied, should be expressed in terms of input size.

For example, the naive algorithm for determining whether
� is composite compares � against the first � � � num-
bers to see if any of them divides � � This makes � � � �
comparisons so it might seem linear and very efficient.

But, note that the size of the problem is������� � � � �
��� � � so the number of comparisons per-
formed is actually � � � � � � � � 	 �
	��� ����� which is ex-
ponential and not very good.

9

Input Size of Problems

Two positive functions � � � � and � � � � are of the same
type if

� � � � ����� ���	�
 � � � �
 � � � � ����� ����
for all large � , where

� � ��� � � � � � � � ��� � � � � are some
positive constants.

For example, all polynomials are of the same type, but
polynomials and exponentials are of different types.

Suppose � is the actual input size in bits needed to en-
code the problem. From this point of view, any quan-
tity � , satisfying

� � �
 ��
 � � �
for some positive constants

� �
and

� �
(independent

of �), may also be used as a measure of the input size
of a problem.

This will simplify our discussions.

10

Input Size Example: Graphs

Graph problems: For many graph problems , the in-
put is a graph � � ��� ��� � . What is the input size?

A natural choice: There are � vertices and � edges.
So we need to encode � � � objects. With fixed length
coding, the input size is

� � � � � 	�
 � � ��� � � � � ����� �
Since� ��� � ���
	

���� ��� ��� ����������� �� ��� � � ��� � ���
	
���� ��� ��� � �����

we may use � � � as the input size.

11

Input Size Example: Integer Multiplication

Integer multiplication problem:
Compute

� � � .
What is the input size?

Solution: The (minimum) input size is

� � 	�
� � ��� � � � ��� � 	�
 � � ��� � � � ��� �

A natural choice is to use

� �
��� � � ��� � � � � �
as the input size since�

�
 ��
 � �

12

Decision Problems

Definition: A decision problem is a question that has
two possible answers, yes and no.

Note: If � is the problem and � is the input we will often write

� � � to denote a yes answer and � �� � to denote a no answer.

Note: This notation comes from thinking of � as a language and

asking whether � is in the language � (yes) or not (no). See

CLRS, pp. 975-977 for more details

Definition: An optimization problem requires an an-
swer that is an optimal configuration.

Remark: An optimization problem usually has a cor-
responding decision problem.

Examples that we will see:
MST vs. Decision Spanning Tree (DST)
Knapsack vs. Decision Knapsack (DKnapsack)
SubSet Sum vs. Decision Subset Sum (DSubset Sum)

13

Decision Problem: MST

Optimization problem: Minimum Spanning Tree
Given a weighted graph � , find a minimum span-
ning tree (MST) of � .

Decision problem: Decision Spanning Tree (DST)

Given a weighted graph � and an integer � , does
� have a spanning tree of weight at most � ?

The inputs are of the form
� � ��� � � So we will write� � � � � � � ��� or

� � � � � �� � ��� to denote, re-
spectively, yes and no answers.

14

Decision Problem: Knapsack

We have a knapsack of capacity � (a positive inte-
ger) and � objects with weights � � � � � � ��� � and values
� � � � � � � � � , where � � and � � are positive integers.

Optimization problem: Knapsack
Find the largest value � �

��� � � of any subset that
fits in the knapsack, that is, � �

��� � �
 � .

Decision problem: Decision Knapsack (DKnapsack)

Given � , is there a subset of the objects that fits
in the knapsack and has total value at least � ?

15

Decision Problem: Subset Sum

The input is a positive integer � and � objects whose
values are positive integers � � � � � � � � � . (For a more
formal definition see CLRS, Section 34.4.5)

Optimization problem: Subset Sum
Among subsets of the objects with sum at most

� , what is the largest subset sum?

Decision problem: Decision Subset Sum(DSubset Sum)

Is there a subset of objects whose values add up
to exactly � ?

16

Optimization and Decision Problems

� For almost all optimization problems there exists
a corresponding simpler decision problem.

� Given a subroutine for solving the optimization
problem, solving the corresponding decision prob-
lem is usually be trivial.
Example: If we know how to solve MST we can
solve DST which asks if there is an Spanning Tree
with weight at most � � How? First solve the MST
problem and then check if the MST has cost
 � �
If it does, answer Yes. If it doesn’t, answer No.

� Thus if we prove that a given decision problem is
hard to solve efficiently, then it is obvious that the
optimization problem must be (at least as) hard.

Note: The reason for introducing Decision problems is that it will

be more convenient to compare the ‘hardness’ of decision prob-

lems than of optimization problems (since all decision problems

share the same form of output, either yes or no.)

17

Decision Problems: Yes-Inputs and No-Inputs

Yes-Input and No-Input: An instance of a decision
problem is called a yes-input (resp. no-input) if the
answer to the instance is yes (resp. no).

CYC Problem: Does an undirected graph � have a
cycle?

Example of Yes-Inputs and No-Inputs:

a b

cd

1 2

34

Yes-input G No-input G

18

Decision Problems: Yes-Inputs and No-Inputs

Decision Problem (TRIPLE):

Does a triple
� � � � � � � of nonnegative integers satisfy

� � � � � ?

Example of Yes-Inputs:
��� ��� � � � , � � ��� � � ��� � .

Example of No-Inputs:
� � ��� � � � � , � � � ��� ����� � .

19

Complementary Problems

Let � denote some decision problem. The comple-
mentary problem �� is the decision problem such that
the yes-answers of �� are exactly the no-answers of � .
Note that � ��

�
�
�

Example:
COMPOSITE: is given positive integer � composite
(that is, can it be factored as � � � � , where � �

�

� � �)?
PRIMES: is given positive integer � a prime number?

� � � ��� �
	�� � � ��	�� �� �
� ��	�� �� � � � � ��� �
	��

20

Complexity Classes

The Theory of Complexity deals with

� the classification of certain
“decision problems” into several classes:
the class of “easy” problems,
the class of “hard” problems,
the class of “hardest” problems;

� relations among the three classes;

� properties of problems in the three classes.

Question: How to classify decision problems?

Answer: Use “polynomial-time algorithms.”

21

Polynomial-Time Algorithms

Definition: An algorithm is polynomial-time if its run-
ning time is � � � � � , where � is a constant indepen-
dent of � , and � is the input size of the problem that
the algorithm solves.

Remark: Whether you use � or � � (for fixed
� � �)

as the input size, it will not affect the conclusion of
whether an algorithm is polynomial time.

This explains why we introduced the concept of two
functions being of the same type earlier on. Using
the definition of polynomial-time it is not necessary to
fixate on the input size as being the exact minimum
number of bits needed to encode the input!

22

Polynomial-Time Algorithms

Examples of Polynomial-Time Algorithms

� The standard multiplication algorithm learned in
school has time � � � � � � � where � �

and � �
are, respectively, the number of digits in the two
integers.

� DFS has time � � � � � � .

� Kruskal’s MST algorithm runs in time �
� � � � � �
� � � � .

23

Nonpolynomial-Time Algorithms

Definition: An algorithm is non-polynomial-time if the
running time is not � � � � � for any fixed � � � .

Example: Let’s return to the brute force algorithm for
determining whether a positive integer � is a prime:
it checks, in time � � �
��� � �

�
� , whether � divides

� for each � with
�
 �
 � � � . The complete

algorithm therefore uses � � � �
 � � � �
�
� time.

Conclusion: The algorithm is nonpolynomial! Why?
The input size is � �
��� � � , and so

� � � �
� � � �
�
� � � � � � �

�
� �

24

Is Knapsack Polynomial?

Recall the problem. We have a knapsack of capacity � (a pos-
itive integer) and

�
objects with weights � � � � � � � ��� and values� � � � � � � � � , where ��� and � � are positive integers. The optimiza-

tion problem is to find the largest value � ���
	 � � of any subset
that fits in the knapsack, that is, � ����	 � �� � . The decision
problem is, given � , to find if there is a subset of the objects that
fits in the knapsack and has total value at least � ?

In class we saw a �
 �
�

�
dynamic programming algorithm for

soving the optimization version of Knapsack. Is this a polynomial
algorithm?

No! The size of the input is

	
�
	�������

�
	
��� � �

�
	
��� � � � �

	
��� � � �

�
� is not polynomial in 	

�
	�� ����
� Depending upon the values of

the � � and � � ,
�
� could even be exponential in 	

�
	�������
�

It is unknown as to whether there exists a polynomial time al-

gorithm for Knapsack. In fact, Knapsack is a � � -Complete

problem, so anyone who could determine whether there was

a polynomial-time algorithm for solving it would be proving that

� � � � or � �� � � and would win the �����
� � � � � � � � � prize

from the Clay Institute!

25

Polynomial- vs. Nonpolynomial-Time

� Nonpolynomial-time algorithms are
impractical .
For example, to run an algorithm of time complex-
ity

� �
for � � � � � on a computer which does 1

Terraoperation (� �
� �

operations) per second:
It takes

� � � ��� � �
� � �

� �
���
�
�

seconds� � �
� �

� �
years.

� For the sake of our discussion of complexity classes
Polynomial-time algorithms are ”practical” .
Note: in reality an � � 	� � algorithm is not really practical.

26

Polynomial-Time Solvable Problems

Definition: A problem is
solvable in polynomial time (or more simply, the prob-
lem is in polynomial time) if there exists an algorithm
which solves the problem in polynomial time.

Examples: The integer multiplication problem, and
the cycle detection problem for undirected graphs.

Remark: Polynomial-time solvable problems are also
called tractable problems.

27

The Class
�

Definition: The class
�

consists of all decision prob-
lems that are solvable in polynomial time. That is,
there exists an algorithm that will decide in polynomial
time if any given input is a yes-input or a no-input.

How to prove that a decision problem is in
�

?
You need to find a polynomial-time algorithm for this
problem.

How to prove that a decision problem is not in
�

?
You need to prove there is no polynomial-time algo-
rithm for this problem (much harder).

28

The Class
�

: An Example

Example problem:
Is a given connected graph � a tree?

This problem is in
�

.
Proof: We need to show that this problem is solvable
in polynomial time. We run DFS on � for cycle detec-
tion. If a back edge is seen, then output NO, and stop.
Otherwise output YES.

Recall that the input size is � � � , and DFS has run-
ning time �

� � � � � . So this algorithm is linear, and
the problem is in

�
.

29

The Class
�

: Another Example

Example problem: DST.
Given weighted graph � and parameter � � � does
� have a spanning tree with weight
 ���

This problem is in
�

.
Proof: Run Kruskal’s algorithm and find a minimal
spanning tree, � � of � �

Calculate � � � � the weight of
� � If �
 � � � � , answer Yes ; otherwise, answer No.

Recall that Kruskal’s algorithm runs in �
� � � � � �
��� � �

time so this is polynomial in the size of the input.

30

Certificates and Verifying Certificates

We have already seen the class
� �

We are now al-
most ready to introduce the class

� � �
Before doing

so we must first introduce the concept of Certificates.

Observation: A decision problem is usually formu-
lated as:

Is there an object satisfying some conditions?

A Certificate is a specific object corresponding to a
yes-input, such that it can be used to show the validity
of that yes-input.

By definition, only yes-input needs a certificate (a no-
input does not need to have a ’certificate’ to show it is
a no-input).

Verifying a certificate: Given a presumed yes-input
and its corresponding certificate, by making use of the
given certificate, we verify that the input is actually a
yes-input.

31

The Class
� �

Definition: The class
� �

consists of all decision
problems such that, for each yes-input, there exists
a certificate that can be verified in polynomial time.

Remark: � � stands for “nondeterministic polynomial time”. The

class � � was originally studied in the context of nondetermin-

ism, here we use an equivalent notion of verification.

32

COMPOSITE � � �

COMPOSITE: Is given positive integer � composite?
For COMPOSITE, an yes-input is just � , which means
� is a composite.

Certificate: What is needed to show � (a presumed
yes-input) is actually a yes-input? This is the certifi-
cate for COMPOSITE.

The certificate is an integer
�

(� �
�
� �) with the

property that it divides � .

Verifying a certificate: Given a certificate
�
, check

whether
�

divides � . This can be done in time
�
� �
��� � � �

�
� (recall that input size is

� � � � so this
is polynomial in input size).

Hence, COMPOSITE � � �
.

33

DSubsetSum � � �

DSubsetSum: Input is a positive integer � and �
positive integers � � � � � � � � � . Is there a subset of these
integers that add up to exactly � ? A DSubsetSum
yes-input consists of � numbers, and an integer � ,
which means there is a subset of those integers that
add up to � .

Certificate: What is needed to show the given input
is actually a yes-input? A subset � of subscripts (the
corresponding integers should add up to �).

Verifying a certificate: Given a subset � of sub-
scripts, check whether � �

��� � � � � .

Input-size is � � �
� � � � � �
��

�
�
��� � � � �

and verification can be done in time

�
�
��� �

� � �
���

��� � � � � �
� � � � �

so this is polynomial time.

Hence we have DSubsetSum � � �
.

34

DHamCyc � � �

Hamiltonian Cycle: Input is a graph � � ��� ��� � .
A cycle of graph � is called Hamiltonian if it contains
every vertex exactly once.

Example

a b

c

de

Find a Hamiltonian
cycle for this graph

Optimization problem: HamCyc
Find a Hamiltonian cycle for this graph or say that
one doesn’t exist.

Decision problem: DHamCyc
Does � have a Hamiltonian cycle?

35

DHamCyc � � �

Certificate: an ordering of the � vertices in � (corre-
sponding to their order along the Hamiltonian Cycle),
i.e., � � � �

� �
� �
����� � � ��� �

Verification: Given a certificate the verification algo-
rithm checks whether it is a Hamiltonian cycle of � by
simply checking whether all of the edges

� � �
� �
� �
� � �

� � �
� �
� � � � � ����� � � � � � � � �

� ��� � � � � ��� � � � � �
appear in the graph. This can be done in � � � � time
so this is polynomial. Hence, DHamCyc � � �

.

Important Note: There are many possible types of certificates

for DHamCyc. This is only one such. Another type of certificate

might be a set of
�

edges for which it has to be confirmed that

they are all in � and that they form a Hamiltonian Cycle.

36

DVC � � �

Vertex Cover: A vertex cover of a graph � is a set
of vertices such that every edge in � is incident to at
least one of these vertices.

a

b

c
d

e
f

Find a vertex cover of G
of size two

Decision Vertex Cover (DVC) Problem: Given an
undirected graph � and an integer � , does � have a
vertex cover with � vertices.

Claim: DVC � � �
.

Proof: A certificate will be a set � of
 � vertices.
The brute force method to check whether � is a vertex
cover takes time �

� � � � . As � � �
� � � � �

�
, the time to

verify is � � � � � � �
�
� . So a certificate can be verified

in polynomial time.

37

Satisfiability I

We will now introduce Satisfiability (SAT), which, we
will see later, is one of the most important

� �
prob-

lems.

Definition: A Boolean formula is a logical formula
which consists of

boolean variables (0=false, 1=true),
logical operations

�� , NOT,
� � � , OR,
� � � , AND.

These are defined by:

� � �� � � � � � �

� � � � �
� � � �
� � � � �
� � � �

38

Satisfiability II

A given Boolean formula is satisfiable if there is a way
to assign truth values (0 or 1) to the variables such
that the final result is 1.

Example: � � � � � � � � � � � � � � � �� � � � �
�� � � � �� � .

� � � � � � � � � �� � � �
�� � � � �� � � � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

For example, the assignment � � � , � � � , � � �
makes � � � � � � � � true, and hence it is satisfiable.

39

Satisfiability III

Example:

� � � � � � � � � � � � � �
�� � � � � � � � �� � � �

�� � �� � �

� � � � � �� � � � � �� �� � �� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

There is no assignment that makes � � � � � � true, and
hence it is NOT satisfiable.

40

SAT � � �

SAT problem: Determine whether an input Boolean
formula is satisfiable. If an Boolean formula is satisfi-
able, it is a yes-input; otherwise, it is a no-input.

Claim: SAT � � �
.

Proof: The certificate consists of a particular 0 or 1
assignment to the variables. Given this assignment,
we can evaluate the formula of length � (counting vari-
ables, operations, and parentheses), it requires at most
� evaluations, each taking constant time. Hence, to
check a certificate takes time � � � � . So we have SAT
� � �

.

41

� -SAT � � �

For a fixed � , consider Boolean formulas in � -conjunctive
normal form (� -CNF):

� � � � � �
� � �

� � �

where each � � is of the form

� � � � � � � � � � � � �
� � �

� � � �
�

where each � � � � is a variable or the negation of a vari-
able.

An example of a 3-CNF formula is
� � � � ��

� � ��� � � �
��
� � ���� � ��� � �

� -SAT problem: Determine whether an input Boolean
� -CNF formula is satisfiable.

Claim: 3-SAT � � �
.

Claim: 2-SAT � � (no proof given here).

42

Some Decision Problems in
� �

Some where we have given proofs:

Decision subset sum problem (DSubsetSum).
Decision Hamiltonian cycle (DHamCyc).
Satisfiability (SAT).
Decision vertex cover problem (DVC).

Some others (without proofs given; try to find proofs):

Decision minimum spanning tree problem (DMST).
Decision 0-1 knapsack problem (DKnapsack).

43

� � � �
?

One of the most important problems in computer sci-
ence is whether

� � � �
or

� �� � �
?

Observe that
� � � �

. Given a problem � � �
, and

a certificate, to verify the validity of a yes-input (an
instance of �), we can simply solve � in polynomial
time (since � � �

). It implies � � � �
.

Intuitively, � � � �
is doubtful. After all, just able to

verify a certificate (corresponds to a yes-input) in poly-
nomial time does not necessary mean we can able to
tell whether an input is an yes-input of no-input in poly-
nomial time.

However, 30 years after the
� � � � � problem was

first proposed, we are still no closer to solving it and
do not know the answer. The search for a solution,
though, has provided us with deep insights into what
distinguishes an “easy” problem from a “hard” one.

44

The Class co-
� �

Note that if � � � �
, there is no guarantee that �� �� �

(since having certificates for yes-inputs, does not
mean that we have certificates for the no-inputs).

The class of decision problems � such that
�� � � �

is called co-
� �

(observe it is does not re-
quire � � � �

).

Example:
� � � ��� �
	 � � � �

and so

� ��	�� �� � � � � ��� �
	�� � �
� � � � �

Remark: in contrast, to the fact that � � � �
does not

necessarily imply �� � � �
we do have that

� � � , if and only if �� � � .
This is because a polynomial time algorithm for � is
also a polynomial time algorithm for �� (the NO-answers
for � become Yes-answers for �� and vice-versa).

45

