Lecture 16: String Matching CLRS- 32.1, 32.4

Outline of this Lecture

- String Matching Problem and Terminology.
- Brute Force Algorithm.
- The Knuth-Morris-Pratt (KMP) Algorithm.
- The Boyer-Moore (BM) Algorithm.

String Matching Problem and Terminology

Given a text array $T[1 \ldots n]$ and a pattern array $P[1 \ldots m]$ such that the elements of T and P are characters taken from alphabet Σ. e.g., $\Sigma=\{0,1\}$ or $\Sigma=\{a, b, \ldots, z\}$.

The String Matching Problem is to find all the occurrence of P in T.

A pattern P occurs with shift s in T, if $P[1 \ldots m]$ $=T[s+1 \ldots s+m]$. The String Matching Problem is to find all values of s. Obviously, we must have $0 \leq s \leq n-m$.

String Matching Problem and Terminology

A string w is a prefix of x if $x=w$, for some string y.

Similarly, a string w is a suffix of x if $x=\mathbf{y} w$, for some string y.

Brute Force Algorithm

Initially, P is aligned with T at the first index position. P is then compared with T from left-to-right. If a mismatch occurs, "slide" P to right by 1 position, and start the comparison again.

Brute Force Algorithm

```
BF_StringMatcher(T, P) {
    n = length(T);
    m = length(P);
```

// s increments by 1 in each iteration // => slide P to right by 1
for (s=0; s<=n-m; s++) \{
// starts the comparison of P and T again
i=1; j=1;
while (j<=m \&\& T[s+i]==P[j]) \{
// corresponds to compare P and T from // left-to-right
i++; j++;
\}
if (j==m+1)
print "Pattern occurs with shift=", s
\}
\}

The Knuth-Morris-Pratt (KMP) Algorithm

In the Brute-Force algorithm, if a mismatch occurs at $P[j]$ ($j>1$), it only slides P to right by 1 step. It throws away one piece of information that we've already known. What is that piece of information?

Let s be the current shift value. Since it is a mismatch at $P[j]$, we know $T[s+1 . . s+j-1]=P[1 . . j-1]$.

How can we make use of this information to make the next shift? In general, P should slide by $s^{\prime}>s$ such that $P[1 . . k]=T\left[s^{\prime}+1 . . s^{\prime}+k\right]$. We then compare $P[k+1]$ with $T\left[s^{\prime}+k+1\right]$.

The Knuth-Morris-Pratt (KMP) Algorithm

When we slide P to right, it should be a place where P could possibly occur in T.

Do not shift too much

Do not shift too much, as it may miss some matched patterns!

The next function

We need to answer the following question: Given $P[1 . . q]$ match text characters $T[s+1 . . s+q]$, what is the least shift $s^{\prime}>s$ such that
$P[1 . . k]=T\left[s^{\prime}+1 . . s^{\prime}+k\right]$,
where $s^{\prime}+k=s+q$?
In practice, the shift s^{\prime} can be precomputed by comparing P against itself. Observe that $T\left[s^{\prime}+1 . . s^{\prime}+k\right]$ is a known text, and it is a suffix of $P[1 . . q]$. To find the least shift $s^{\prime}>s$, it is the same as finding the largest $k<q$, s.t.,
$P[1 . . k]$ is a suffix of $P[1 . . q]$.

The next function

Given $P[1 . . m]$, let next be a function $\{1,2, \ldots, m\} \rightarrow$ $\{0,1, \ldots, m-1\}$ such that
$\operatorname{next}(q)=\max \{k: k<q$ and $P[1 . . k]$ is a suffix of $P[1 . . q]\}$.

q	1	2	3	4	5	6	7	8	9	10
P [q]	a	b	a	b	a	b	\boldsymbol{a}	b	c	a
ext (q)	0	0	1	2	3	4	5	6	0	

Given $\operatorname{next}(q)$ for all $1 \leq q \leq m$, we can use the KMP algorithm.

The Knuth-Morris-Pratt (KMP) Algorithm

```
KMP_StringMatcher(T, P) {
    n = length(T); m = length(P);
    compute_Next(P);
    q = 0; // number of characters matched
                // so far
    i=1;
    while (i<=n) {
        // loop until a match is found, or
        // number of characters matched so far
        // is 0; note 'i' is unchanged.
        while (q > 0 and P[q+1] != T[i]) {
        q=next [q];
        }
        // matched character increased by 1
        if (P[q+1]==T[i]) q=q+1;
        if (q==m) {
        print "Pattern occurs with shift=", i-m
        q=next[q];
        }
        i++;
    }
}
```


The Knuth-Morris-Pratt (KMP) Algorithm

How to compute next function

Given next[1], next[2], ..., next [q], how can we compute next $[q+1]$?

1. If $P[q+1]==P[$ next $[q]+1]$,
then next $[q+1]=$ next $[q]+1$.

How to compute next function

2. If $P[q+1]!=P[$ next $[q]+1]$, then do what?
P should slide to a place such that the prefix of P [1..next [q]] occurs as a suffix of P [q-next $[q+1] . . q]$; this information is stored in next [next [q]] !

observe that $P[1 . . \operatorname{next}[q]]=P[q-\operatorname{next}[q]+1 . . q]$

How to compute next function

We first set next [1] $=0$, then compute next $[q]$ with $q=2,3, \ldots m$, one by one in $m-1$ iterations.
compute_Next(P) \{

```
    m = length(P);
```

 next[1]=0; // initialization
 k = 0; // number of characters matched
 // so far
 q=2;
 while (\(q<=m\)) \{
 while (k > 0 and \(P[k+1]\) ! \(=P[q])\) \{
 k = next[k];
 \}
 if (\(\mathrm{P}[\mathrm{k}+1]==\mathrm{P}[\mathrm{q}]) \mathrm{k}=\mathrm{k}+1\);
 next [q] \(=k\);
 q++;
 \}
 \}

Running Time of the KMP Algorithm

1. compute_Next
(a) $3 q-k=6$ at the beginning, and $3 q-k \leq 3 m$ at all times.
(b) Note that after each comparison, $3 q-k$ increases at least by 1 . But the value of $3 q-k$ starts at 6 , and the largest possible value is $3 m$, it implies there are $O(m)$ number of comparisons.
(c) Hence, the running time of compute_Next is $O(m)$.

Running Time of the KMP Algorithm

2. KMP_StringMatcher
(a) $3 i-q=3$ at the beginning, and $3 i-q \leq 3 n$ at all times.
(b) Note that after each comparison, $3 i-q$ increases at least by 1.
(c) Hence, the running time of KMP_StringMatcher is $O(n)+O(m)=O(m+n)$.

The Boyer-Moore (BM) Algorithm

The Boyer-Moore (BM) algorithm slides P from left to right; however it compares P and T from right to left, i.e., $P[m]$ will first compare with $T[i]$. If they match, it then compares $P[m-1]$ with $T[i-1]$, etc. Else, it slides P to right, and compare $P[m]$ with T again.

The BM Algorithm : the bad-character heuristic

One insight of BM algorithm is that, if there is a mismatch between $P[j]$ and $T[i]$, and $T[i]$ does not appear in P. P should be advanced by j.

The BM Algorithm : the bad-character heuristic

If $T[i]$ appears in P, shift P such that $T[i]$ is aligned with the rightmost occurrence of $T[i]$ in P.

The BM Algorithm : the bad-character heuristic

If it happens the alignment of T and P gives a negative shift value, then just ignore it.

The BM Algorithm : the good suffix heuristic

Similar to the KMP algorithm, if the current shift is s, and it is a mismatch at $P[j]$, then we know $P[j+$ $1 . . m]=T[s+j+1 . . s+m]$. Then we can shift P by s^{\prime} such that T is aligned with the rightmost occurrence of $P[j+1 . . m]$.

The BM Algorithm

The BM Algorithm takes the larger shift amount computed by bad-character heuristic and good-suffix heuristic.
bad character good suffix

bad character heuristic

good suffix heuristic

