
Lecture 13: All-Pairs Shortest Paths

CLRS Section 25.1

Outline of this Lecture

� Introduction of the all-pairs shortest path problem.

� First solution using Dijkstra’s algorithm.
Assumes no negative weight edges� ����� ��� 	�
� ��� �����
Needs priority queues

� A (first) dynamic programming solution.
Only assumes no negative weight cycles.
First version is

� � ��� ��� � �
Repeated squaring reduces to

� ����� � � 	�
� ��� �����

No special data structures needed.

1

The All-Pairs Shortest Paths Problem

Given a weighted digraph � � � ����� �
with weight

function � 	 �
 �
, (� is the set of real numbers),

determine the length of the shortest path (i.e., dis-
tance) between all pairs of vertices in � . Here we
assume that there are no cycles with zero or negative
cost.

a b

cd

e

20

12 5
4

17

3
83

−20

5

10

4 4
4

a b

cd

e

without negative cost cycle with negative cost cycle

6

2

Solution 1: Using Dijkstra’s Algorithm

If there are no negative cost edges apply Dijkstra’s al-
gorithm to each vertex (as the source) of the digraph.

� Recall that D’s algorithm runs in
� � � ��� � � 	
� � � �

This gives a

� � � � � � � � 	�
 � � � � � � ��� 	�
 � � � ��� 	�
 � � �
time algorithm, where � � ��� �

and � � � � �
.

� If the digraph is dense, this is an
� � � � 	�
 � � � algorithm.

� With more advanced (complicated) data structures
D’s algorithm runs in

� � � 	�
 � � � � � time yielding
a

� � � � 	
� � � ��� � final algorithm. For dense
graphs this is

� � � � �
time.

3

Solution 2: Dynamic Programming

(1) How do we decompose the all-pairs shortest paths
problem into subproblems?

(2) How do we express the optimal solution of a
subproblem in terms of optimal solutions to some
subsubproblems?

(3) How do we use the recursive relation from (2) to
compute the optimal solution in a bottom-up
fashion?

(4) How do we construct all the shortest paths?

4

Solution 2: Input and Output Formats

To simplify the notation, we assume that
� � ��� ��� � ����� � ��� .

Assume that the graph is represented by an � � �

matrix with the weights of the edges:

�	��
 �
�� � � if � � � �
� ��� � � � if � �� � and ��� � � � � �

,� if � �� � and ��� � � � �� �
.

Output Format: an � � � matrix � � ��� ��
�� where � ��

is the length of the shortest path from vertex � to � .

5

Step 1: How to Decompose the Original Problem

� Subproblems with smaller sizes should be easier
to solve.

� An optimal solution to a subproblem should be ex-
pressed in terms of the optimal solutions to sub-
problems with smaller sizes.

These are guidelines ONLY.

6

Step 1: Decompose in a Natural Way

� Define ����� ���
 to be the length of the shortest path
from � to � that contains at most � edges.
Let � ��� �

be the � � � matrix � ����� ���
 � .

� ������	
 ���
 is the true distance from � to � (see next
page for a proof this conclusion).

� Subproblems: compute � ��� �
for � � � ������ � ��� � �

Question: Which � ��� �
is easiest to compute?

7

� ����	
 ���
 = True Distance from � to �
Proof: We prove that any shortest path � from � to �
contains at most � � � edges.

First note that since all cycles have positive weight,
a shortest path can have no cycles (if there were a
cycle, we could remove it and lower the length of the
path).

A path without cycles can have length at most � � �
(since a longer path must contain some vertex twice,
that is, contain a cycle).

8

A Recursive Formula

Consider a shortest path from � to � of length � ��� ���
 .

������ ������ ������������ ������������������ � � � �� � �
i j

Case 1: at most � � � edges

...

Case 2: exactly � edges

i k � �	�
shortest path shortest path

�
�������� �
j...

�
�������� �

Case 1: It has at most � � � edges.
Then ����� ���
 � ����� 	
 ���
 � ����� 	
 ���
 � �

 .
Case 2: It has � edges. Let � be the vertex before �
on a shortest path.
Then � ��� ���
 � � ��� 	
 ���� � � �
 �
Combining the two cases,

� ��� ���
 � � ���
�� � � �
� � ��� 	
 ���� � � �
�� �

9

Step 3: Bottom-up Computation of � ����	
 �

� Bottom: � �
 � � � � ��
�� , the weight matrix.

� Compute � ��� �
from � ��� 	
 � , for � � � ��� � � � ��� � �

using

� ��� ���
 � � ���
�� � � �
� � ��� 	
 ���� � � �
 � �

10

Example: Bottom-up Computation of � ��� 	
 �

Example

3

4

7

4

1 2

34

8 11

� �
 � � � �	��
 � is just the weight matrix:

� �
 � �
����
� � � � �� � � � �� � � �� � � �

�	���

11

Example: Computing � � � � from � �
 �

� � � ���
 � � ���
�� � � �
� � �
 ���� � � �
�� �

3

4

7

4

1 2

34

8 11

With � �
 � given earlier and the recursive formula,

� � � � �
����
� � � � � ���� � � � �� � � � �� � � � �

�	���

12

Example: Computing � � � � from � � � �

��� � ���
 � � � �
�� � � �
� ��� � ���� � � �
 �

3

4

7

4

1 2

34

8 11

With � � � � given earlier and the recursive formula,

� � � � �
����
� � � � � ���� � � � �� � � � � �� � � � �

�	���

� � � � gives the distances between any pair of vertices.

13

The Algorithm for Computing � ����	
 �

for � � � to � � �
for � � � to �

for � � � to �
�

� � � � � ;
for � � � to �

�

� � � � ����� 	
 ���� � � �
 ;
if (��� � � � � �) � � � � � � � ;

�

����� ���
 � � � � ;
�

14

Comments on Solution 2

� Algorithm uses
� � � � � space; how can this be

reduced down to
� � � � ���

� How can we extract the actual shortest paths from
the solution?

� Running time � � � � � , much worse than the solu-
tion using Dijkstra’s algorithm. Can we improve
this?

15

Repeated Squaring

Observe that we are only interested to find � ��� 	
 � , all
others � � � � � � � � � �

are only auxiliary. Further-
more, since the graph does not have negative cycle,
we have � ����	
 � � � � , for all ��� � .

In particular, this implies that � �
�������
	����� � � � ����	
 � �

We can calculate � �
� ������	 �
� �

using “repeated squar-
ing” to find

� � � � � � � � � � � � � � � ��� � � � �
�������
	���
� �

16

We use the recurrence relation:

� Bottom: � �
 � � � � ��
 � , the weight matrix.

� For � � � compute � � ��� � using

��� ��� ���
 � � � �
�� � � �
� ��� � ���� � ��� � ��
 � �

Given this relation we can calculate � �
�
���

from � �
�
� �� �

in � � � � � time. We can therefore calculate all of

� � � � � � � � � � � � � � ��� ��� � � �
� ������	 �
� � � � ��� �

in � � � � 	
� � � time, improving our running time.

17

The Floyd-Warshall Algorithm

Step 1 : Decomposition

Definition: The vertices � � � � � ��� � � � ��� 	
 are called the
intermediate vertices of the path � � ���
 � � � ��� � � � ��� 	

� ����� .

� Let ��� � ���
 be the length of the shortest path from �
to � such that all intermediate vertices on the path
(if any) are in set ��� ��� � ����� � � � .
���
	 ���
 is set to be �	��
 , i.e., no intermediate vertex.

Let � � � � be the � � � matrix � � � � ���
 � .
� Claim: ����� ���
 is the distance from � to � . So our aim

is to compute � ��� � .

� Subproblems: compute � � � � for � � � � � ������ � � �
18

Step 2: Structure of shortest paths

Observation 1: A shortest path does not contain the
same vertex twice. Proof: A path containing the
same vertex twice contains a cycle. Removing cycle
gives a shorter path.

Observation 2: For a shortest path from � to � such
that any intermediate vertices on the path are chosen
from the set ��� ��� � ����� � � � , there are two possibilities:

1. � is not a vertex on the path,
The shortest such path has length � � � 	
 ���
 .

2. � is a vertex on the path.
The shortest such path has length � � � 	
 ���� � ��� � 	
 ��
 .

19

Step 2: Structure of shortest paths

Consider a shortest path from � to � containing the
vertex � . It consists of a subpath from � to � and a
subpath from � to � .
Each subpath can only contain intermediate vertices
in ��� � � � � � � � � � , and must be as short as possible,
namely they have lengths � � � 	
 ���� and � � � 	
 ��
 .

Hence the path has length � � � 	
 ���� � � � � 	
 ��
 .

Combining the two cases we get

� � � ���
 � � � � � � � � 	
 ���
 � � � � 	
 ���� � � � � 	
 ��
 � �

20

Step 3: the Bottom-up Computation

� Bottom: � �
	 � � � � ��
 � , the weight matrix.

� Compute � � � � from � � � 	
 � using

��� � ���
 � � ��� � ��� � 	
 ���
 � ��� � 	
 ���� � ��� � 	
 ��
 �
for � � � � � � � � � .

21

The Floyd-Warshall Algorithm: Version 1

Floyd-Warshall(� � �)
�

for � � � to � do initialize
for � � � to � do

� � 	 � � � � � � � � � � � � ;
��� � � � � � � � � � � � ;

�

for � � � to � do dynamic programming
for � � � to � do

for � � � to � do
if

� � � � 	
 � � � � � � � � � � 	
 � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � 	
 � � � � � � � � � � 	
 � � � � � � ;
��� � � � � � � � � � ;

�

else � � � � � � � � � � � � � 	
 � � � � � � ;
return � ��� � � � � � � � � � � � � ;�

22

Comments on the Floyd-Warshall Algorithm

� The algorithm’s running time is clearly
� � � � �

.

� The predecessor pointer ������� ��� �
	 � can be used
to extract the final path (see later).

� Problem: the algorithm uses
� � � � �

space.
It is possible to reduce this down to

� � � � � space
by keeping only one matrix instead of � .
Algorithm is on next page. Convince yourself that
it works.

23

The Floyd-Warshall Algorithm: Version 2

Floyd-Warshall(� � �)
�

for � � � to � do initialize
for � � � to � do

� � � � � � � � � � � � � � ;
��� � � � � � � � � � � � ;

�

for � � � to � do dynamic programming
for � � � to � do

for � � � to � do
if �

� ;
��� � � � � � � � � � ;

�

return � � � � � � � � � � � � ;
�

24

Extracting the Shortest Paths

The predecessor pointers ��� ��� � � �
	 � can be used to
extract the final path. The idea is as follows.

Whenever we discover that the shortest path from �
to � passes through an intermediate vertex � , we set
��� � � � � � � � � � .

If the shortest path does not pass through any inter-
mediate vertex, then ��� � � � � � � � � � � � .
To find the shortest path from � to � , we consult ��� � � � � � � � .
If it is nil, then the shortest path is just the edge ��� � � � .
Otherwise, we recursively compute the shortest path
from � to ��� � � � � � � � and the shortest path from ��� � � � � � � �
to � .

25

The Algorithm for Extracting the Shortest Paths

Path(� � �)
�

if (��� � � � � � � � � � � �) single edge
output ��� � � � ;

else compute the two parts of the path
�

Path(� � ��� � � � � � � �);
Path(��� � � � � � � � � �);

�
�

26

Example of Extracting the Shortest Paths

Find the shortest path from vertex 2 to vertex 3.� � � � Path � � � � � ��� � � � � � � � � �� � � � � � � Path � � � � � ��� � � � � � � � � �� � �
�
� � � � � � Path � � � � � ��� � � � � � � � � � � � � ��� � ��� (2,5)�

�
� � � � � � Path � � � � � ��� � � � � � � � � � � � � ��� � ��� (5,4)�

� � � � � Path � � � � � ��� � � � � � � � � ��
� � � �

�
� � � Path � � � � � ��� � � � � � � � � � � � � ��� � ��� (4,6)�

� � � � � � Path ��� � � � ��� � � ��� � � � � � � � � ��� � ��� (6,3)�
� � � �

27

