
Lecture 11: Dynamic Progamming
CLRS Chapter 15

Outline of this section

� Introduction to Dynamic programming;
a method for solving optimization problems.

� Dynamic programming vs. Divide and Conquer

� A few examples of Dynamic programming

– the 0-1 Knapsack Problem

– Chain Matrix Multiplication

– All Pairs Shortest Path

– The Floyd Warshall Algorithm: Improved All
Pairs Shortest Path
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Recalling Divide-and-Conquer

1. Partition the problem into particular subproblems.

2. Solve the subproblems.

3. Combine the solutions to solve the original one.

Remark: In the examples we saw the subproblems
were usually independent, i.e. they did not call the
same subsubproblems. If the subsubproblems were
not independent, then D&C could be resolving many
of the same problems many times. Thus, it does more
work than necessary!

Dynamic programming (DP) solves every subsubprob-
lem exactly once, and is therefore more efficient in
those cases where the subsubproblems are not in-
depndent.
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The Intuition behind Dynamic Programming

Dynamic programming is a method for solving
optimization problems.

The idea: Compute the solutions to the subsub-problems
once and store the solutions in a table, so that they
can be reused (repeatedly) later.

Remark: We trade space for time.
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0-1 Knapsack Problem

Informal Description: We have � items. Let ��� de-
note the value of the � -th item, and let � � denote the
weight of the � -th item. Suppose you are given a knap-
sack capable of holding total weight � .

Our goal is to use the knapsack to carry items, such
that the total values are maximum; we want to find a
subset of items to carry such that

� The total weight is at most � .
� The total value of the items is as large as possible.

We cannot take parts of items, it is the whole item or
nothing. (This is why it is called 0-1.)

How should we select the items?
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0-1 Knapsack Problem

Formal description:
Given � � � , and two � -tuples of positive numbers

�
����� ���	��
�
�
�� ���� and

�
� ��� � � 
�
�
�� ������

we wish to determine the subset� � ��� ������
�
�
�� ��� (of items to carry) that

maximizes
�! �"

� � �

subject to
�! �"

� �$# � 


Remark: This is an optimization problem. The Brute
Force solution is to try all �  possible subsets

�
.

Question:Is there a better way?
Yes. Dynamic Programming!

5



General Schema of a DP Solution

Step1: Structure: Characterize the structure of an
optimal solution by showing that it can be decom-
posed into optimal subproblems

Step2: Recursively define the value of an optimal
solution by expressing it in terms of optimal so-
lutions for smaller problems (usually using �

���

and/or � ��� ).

Step 3: Bottom-up computation: Compute the value
of an optimal solution in a bottom-up fashion by
using a table structure.

Step 4: Construction of optimal solution: Construct
an optimal solution from computed information.
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Remarks on the Dynamic Programming Approach

� Steps 1-3 form the basis of a dynamic-programming
solution to a problem.

� Step 4 can be omitted if only the value of an opti-
mal solution is required.
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Developing a DP Algorithm for Knapsack

Step 1: Decompose the problem into smaller
problems.

We construct an array � � � 
 
 � ��� 
 
 � � .
For

� # � # � , and � # � # � , the entry� � � � � � will store the maximum (combined)
value of any subset of items

��� � � ��
�
�
�� � � of (com-
bined) weight at most � .

That is��� ���	��
� � ��� ���� ������� � �
" � � � � � �! ! " !� �$#%� ����� � ��& � '�()  

If we can compute all the entries of this array, then
the array entry � � � � � � will contain the solution
to our problem.

Note: In what follows we will say that
�

is a solu-
tion for � � � � � if

� � � � ������
�
�
�� � � and * +  �" � + #
� and that

�
is an optimal solution for � � � � � if

�
is a solution and * +  �" � + , � � � � � � 


8



Developing a DP Algorithm for Knapsack

Step 2: Recursively define the value of an optimal
solution in terms of solutions to smaller problems.

Initial Settings: Set� � � � � � , � for � # � # � , no item� � � � � � , � � for � � � , illegal

Recursive Step: Use

� � � � � � , � ����� � � � � � � � � � � ��� � � � � � � � � � � ���
for

� # � # � , � # � # � .

Intuitively, an optimal solution would either choose item
� is or not choose item � .
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Developing a DP Algorithm for Knapsack

Step 3: Bottom-up computation of � � � � � �
(using iteration, not recursion).

Bottom: � � � � � � , � for all � # � # � .

Bottom-up computation: Computing the table using

� � � � � � , � � ��� � � � � � � � � � � � � � � � � � � � � � � ���
row by row.

1

n

2

0 0 0 0 0... ...

...

bottom

up

i= 0

V[i,w] w=0 1 2 3 ... ... W
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Example of the Bottom-up computation

Let � , � � and

� 1 2 3 4
� � 10 40 30 50
� � 5 4 6 3� � ��� ��
 � 1 2 3 4 5 6 7 8 9 10

� � � 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 10 10 10 10 10 10
2 0 0 0 0 40 40 40 40 40 50 50
3 0 0 0 0 40 40 40 40 40 50 70
4 0 0 0 50 50 50 50 90 90 90 90

Remarks:

� The final output is
� ��� � � � 
 � ��� .

� The method described does not tell which subset gives the
optimal solution. (It is � � � � # in this example).
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The Dynamic Programming Algorithm

KnapSack(
� � � �  ��� )�

for ( � � � to � )
� � � �	� 
� � ;

for ( �� � to  )
for ( � � � to � )

if ( � � � 
 & � )� � ���$��
� � �%� � � � ��� � �	��
 � � � � 
�� � � ��� � �	� � � � � 
 
$# ;
else� � ���$��
� ��� ��� � �	��
 ;

return
� �  ��� 
 ;�

Time complexity: Clearly, 	 � � � � .
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Constructing the Optimal Solution

� The algorithm for computing � � � � � � described in
the previous slide does not record which subset
of items gives the optimal solution.

� To compute the actual subset, we can add an
auxiliary boolean array ������� � � � � � which is 1 if we
decide to take the � -th file in � � � � � � and 0 other-
wise.

Question: How do we use all the values ������� � � � � � to
determine the subset

�
of files having the maximum

computing time?
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Constructing the Optimal Solution

Question: How do we use the values ��� ��� � � � � � to
determine the subset

�
of items having the maximum

computing time?

If keep[ � � � ] is 1, then � � �
. We can now repeat

this argument for keep[ � � � � � � �  ].
If keep[ � � � ] is 0, the � �� �

and we repeat the argu-
ment for keep[ � � � � � ].

Therefore, the following partial program will output the
elements of

�
:

� , � ;
for ( � , � downto 1)

if (keep � � � � � , , �
)�

output i;� , � � � � � � ;�
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The Complete Algorithm for the Knapsack Problem

KnapSack(
� � � �  ��� )�

for ( � � � to � )
� � � �	��
� � ;

for ( �� � to  )
for ( � � � to � )

if (( � � � 
 & � ) and (
� � � 
�� � � � � � �	� � � � � 
 
�� � � ��� � �	��
 ))� ��� ���	��
� � � � 
�� � � � � � �	� � � � � 
 
 ;

keep
� ��� ��
� � ;�

else� ��� ���	��
� � � ��� � �	��
 ;
keep

� ��� ��
� � ;�
� � � ;
for ( ��  downto 1)

if (keep
� ��� � 
 � � � )�

output i;� � � � � � � 
 ;�
return

� �  � � 
 ;�
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Dynamic Programming vs. Divide-and-Conquer

The Dynamic Programming algorithm developed runs
in 	 � � � � time.
We started by deriving a recurrence relation for solv-
ing the problem

� � � � � � , �� � � � � � , � ����� � � � � � � � � � � � � � � � � � � � � � � � �
Question: why can’t we simply write a top-down divide-
and-conquer algorithm based on this recurrence?
Answer: we could, but it could run in time � � �  �
since it might have to recompute the same values
many times.

Dynamic programming saves us from having to re-
compute previously calculated subsolutions!
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Final Comment

Divide-and-Conquer works Top-Down.

Dynamic programming works Bottom-Up.
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