
Lecture 4: The Linear Time Selection

Selection Problem

Given a sequence of numbers
�����������	���
����

, and an
integer � , � � � � � , find the � th smallest element.
When ��� ��������� , it is called the median problem.

Example: Given
� � ����� �! � �#" � �#$ �  % � �#"!"  , the & th

smallest element is 19.

Question: How do you solve this problem?

1



First Solution: Selection by sorting

Step 1: Sort the elements in ascending order with any
algorithm of complexity � � � ����� ��� .

Step 2: Return the � th element of the sorted array.

The complexity of this solution is � � � �	�
� ��� .
Question: Can we do better?

Answer: YES, but we need to recall Partition( � �� ���
)

used in Quicksort!

2



Second Solution : Linear running time in average

Recall of Partition( � �� ���
)

Definition: Rearrange the array � � � � � ��� into two (pos-
sibly empty) subarrays � � � � ��� � � � and � � � � � � � ���
such that

� ��� � � � � �	��
 � ��� �
for any

� � � � � � � and
� � � � � � �

.

x

p rq

x x

x = A[r] 

(1) The original � � ��� is used as the pivot.
(2) It is a deterministic algorithm.
(3) The element for the

�
th position is found!

Note that this partition is different from the partition we
used in COMP 171.

3



The Idea of Partition( � � � ���
)

ip j r
x

x x unrestricted

(1) Initially � � ��� � � � � � � � � � .

(2) Increase
�

by 1 each time to find a place for � � � � .
At the same time increase � when necessary.

(3) The procedure stops when
� � �

.

4



One Iteration of the Procedure Partition

ip j r
x

x x

>x

jp i

x x

x

r

rp

x x

i j

x< x

p i j r

x x

(A) A[j] > x

(B) A[j] < x 

(A) Only increase
�

by 1.

(B) ��� � � � . � � � ��� � � � � . �
�

� � � .

5



The Operation of Partition( ��������� ): Example

i

j

j

j

p i j

p i j

p i j

p i j, r

p i  j, r

r

r

r

r

r

r

 rp, j

p, i

p, i

p, i

2 8 7 41 3 5 6

2

2

2

2

2

2

2

2

1

1

1

1

1 3

3

3

3

8

8

8

8

8

8

8

7

7

7

7

7

7

5

5

5

6

6

8 7 1 3 5 6 4

7 1 3 5 6 4

1 3 5 6 4

3 5 6 4

5 6 4

6 4

4

4

(1)

(2)

(3)

(4)

(5)

(6)

(9)

(7)

(8)

6



The Partition( � � � ���
) Algorithm

Partition(A, p, r)
{
// A[r] is the pivot element
x = A[r];
i = p-1;
for (j = p to r-1) {
if (A[j] <= x) {
i = i+1;
exchange A[i] and A[j]

}
}

// put pivot in position
exchange A[i+1] and A[r]
// q = i+1
return i+1;
}

7



The Running Time of Partition( � � � ���
)

comparison of array elements
assignment, addition, comparison of loop variables

Partition( � � � � �
):

� � � � ��� 1
� � � � � 1
for

� � �
to

� � � ��� � � � �
if � � � � � � � � � � �

� � � � � � � � � � �
exchange � � � ��� � � � � �  �� � � � �

exchange � � � � � � � � � ��� 3
return � � � 1

Total: � � � � � and � ��� � � � � � � ���

Running time is � � � � � � , that is, linear in the length
of the array � � � � � ��� .

8



Randomized-Partition( � �� � �
)

The Idea: In the algorithm Partition( � �� � �
), � � �	� is al-

ways used as the pivot � to partition the array � � � � � �	� .
In the algorithm Randomized-Partition( � � � ���

), we ran-
domly choose an

�
,
� � � � �

, and use � � � � as pivot.

Randomized-Partition(A, p, r)
{
j = random(p, r);
exchange A[r] and A[j]
Partition(A, p, r);
}

Remark: random(
�
,

�
) is a pseudorandom-number

generator that returns a random number between
�

and
�
.

9



Randomized-Select( � �� � � � � ), � � � � � � � � �
Problem: Select the � th smallest element in � � � � � ��� ,
where � � � � � � � � � .

Solution: Apply Randomized-Partition( ��� � � � ), getting

p q r

k =
kth element

q−p+1

Case 1: ��� � , pivot is the solution.

Case 2: ��� � , the � th smallest element in ��� �	�
� ��� must be the
� th smallest element in ��� �	�
����

�
� .

Case 3: ��� � , the � th smallest element in ��� �	�
� ��� must be the� ��� ��� th smallest element in ������
�
�
� ��� .

If necessary, recursively call the same procedure to the subar-

ray.

10



Randomized-Select( � �� � � � � ), � � � � � � � � �
if
� � � �

return � � � �� � Randomized-Partition ��� � � ��� �
� � � � � � �
if � � � �

the pivot is the answer
return � � �	�

else if � 
 �

return Randomized-Select ��� � � � � � � � � �
else

return Randomized-Select ��� � � � � � � � � � � �

Remark: To find the � th smallest element in � � � � � � � ,
call Randomized-Select( � � � � � � � ).

11



Running Time of Randomized-Select( � � � � � � � )
Let � � � � � � be the average number of comparisons of
array elements for � � � � � .

Then � � � � � � � " and for � � � we get

� � � � � � � � � � � � initial partition� �� ��� � �
�

� �
� � � � � � � � � � � recursion,

� 
 �� � �
� � � �

� � � � � � � � � � recursion,
� � �

We will prove by induction on � that

� � � � � � 
 & �
for all � and � .

12



Proof that � � � � � � 
 & �
Induction basis: � � � � � � � " 
 & � � �
Induction step: Assume that � � � � � � 
 & �
for all � 
 � and � � � � � . Then
� � � � � �
�

�
�
�
�

�
���

���	�

�� �

� � � � � � �	� ��� �



�� �����
� � � �

�
� � ���

�
�
�
�
�

�
� �

���	�

�� �

� � � � ��� �



�� �����
� � � �

�
���

�
�
�
�
�

�
� � � � � �	� �

� � � � � �	�
�
�� � �

� � � �
�
�� � � � � � �

�
�� �

�
�
�
�
�

�
� � � ��� � �

�
� � � � � � � �	� � �

�
� �

13



Proof that � � � � � � 
 & �

� � � � � � 
 � � � � �
�
� � � � �

where

� � � � � � � � � � � � � &%� � & � � � & � � �
��� � � � � � &!� � & � � � � � "

����� � � � � � � 
 "
for � � � � � � ����� . Hence

� � � � � � � � � � � ����� � �  � � � &!� � �
for all � . Therefore

� � � � � � � � � � �  � � & � �
�


 &%� �

14



Running Time of Randomized-Select( � � � � � � � )
We proved that � � � � � � 
 &%� . Since � � � � � � � � � � ,
we have in particular that

� � � � � � � � � ��� �

15



Randomized-Quicksort Algorithm

We make use of the Randomized-Partition idea to de-
velop a new version of quicksort.

Randomized-Quicksort(A, p, r)
{
if (p < r) {
q = Randomized-Partition(A, p, r);
Randomized-Quicksort(A, p, q-1);
Randomized-Quicksort(A, q+1, r);
}
}

Does it run faster than the original version of quick-
sort?

16



Running Time of the Randomized-Quicksort

Results :

Worst Case: � � � � � � � � � � .
Average Case: � � � � � � � � �	�
� ��� .
Clearly, the worst case is still � � � � � , what about the
average case?

17



Average running time of Randomized-Quicksort

Key observations:

� The running time of (randomized) quicksort is dom-
inated by the time spent in (randomized) partition.
In the partition procedure, the time is dominated
by the number of key comparisons.

� When a pivot is selected, the pivot is compared
with every other elements, then the elements are
partitioned into two parts accordingly.

� Elements in different partition are NEVER com-
pared with each other in all operations.

Tricks: We find the expected number of comparisons
for all randomized-partition calls.

18



Average running time of Randomized-Quicksort

Let � be the input array which is a permutation of the
� distinct elements � � 
 � � 
 �	� � 
 � � .

Let
�

be the total number of comparisons performed
in ALL calls to randomized-partition. Let

�
��� be the

number of comparisons between � � and � � , observe
that

�
��� can only be 0 or 1. Our goal is to compute

the expected value of
�

, i.e.,

� � � � � � �
�
�
�

� �
�

�

� � � �
� �

���
�

�
�
�
�

� �
�

�

� � � �
� � � � ���

�

�
�
�
�

� �
�

�

� � � �
� ��� � � � � is compared to � �

� � �
� � � � � � is not compared to � �

� � " �

�
�
�
�

� �
�

�

� � � �
� � � � � � is compared to � �

�

19



Average running time of Randomized-Quicksort

It remains to show how to find � � � � � is compared to � �
�
.

For � � � � � � � , let � ��� � � � �
� � � � � ���	����� � �

�

(remember � �

 � � �

� 
 ����� 
 � � ).

Key observations:

� If � � or � � is selected as a pivot BEFORE any el-
ements in

� � � �
� � � � � � ���	����� � ���

���
, � � and � � will

be compared.

� Conversely, if any element in � ��� other then � � or
� � is selected as a pivot before � � and � � , � � and
� � will be placed in DIFFERENT partitions, and
hence they will NOT compare with each other in
ALL randomized-partition calls.

� ANY element other than the elements in � ��� has
no effect to � � � � � is compared to � �

�
.

20



Average running time of Randomized-Quicksort

It remains to find the probability that � � or � � is the first
pivot chosen from � ��� .

� � � � � is compared to � �
�

� � � � � � or � � is the first pivot chosen from � ���
�

� � � � � � is the first pivot chosen from � ���
�

� � � � � � is the first pivot chosen from � ���
�

� �
� � � � �

� �
� � � � �

� �
� � � � �

21



Average running time of Randomized-Quicksort

Putting everything together, we have

� � � � �
�
�
�

� �
�

�

� � � �
� �
� � � � �

�
�
�
�

� �
�
�
� �

� �
� �

� � �



�
�
�

� �
�

�

� �
� � �

�
�
�
�

� �
� � � ��� � �

� � � � ��� ���

Hence, the expected number of comparisons is � � � ��� � � ,
which is the average running time of Randomized-
Quicksort.

22


