## **Lecture 4: The Linear Time Selection**

#### **Selection Problem**

Given a sequence of numbers  $\langle a_1, \ldots, a_n \rangle$ , and an integer i,  $1 \leq i \leq n$ , find the *i*th smallest element. When  $i = \lceil n/2 \rceil$ , it is called the median problem.

**Example:** Given  $\langle 1, 8, 23, 10, 19, 33, 100 \rangle$ , the 4th smallest element is 19.

**Question:** How do you solve this problem?

### First Solution: Selection by sorting

**Step 1:** Sort the elements in ascending order with any algorithm of complexity  $O(n \log n)$ .

**Step 2:** Return the *i*th element of the sorted array.

The complexity of this solution is  $O(n \log n)$ .

**Question:** Can we do better?

**Answer:** YES, but we need to recall Partition(A, p, r) used in Quicksort!

#### Second Solution : Linear running time in average

Recall of Partition(A, p, r)

**Definition:** Rearrange the array A[p..r] into two (possibly empty) subarrays A[p..q - 1] and A[q + 1..r] such that

 $A[u] \le A[q] < A[v]$ 

for any  $p \le u \le q-1$  and  $q+1 \le v \le r$ .



- (1) The original A[r] is used as the pivot.
- (2) It is a deterministic algorithm.
- (3) The element for the qth position is found!

Note that this partition is different from the partition we used in COMP 171.



- (1) Initially (i, j) = (p 1, p).
- (2) Increase j by 1 each time to find a place for A[j]. At the same time increase i when necessary.
- (3) The procedure stops when j = r.

### One Iteration of the Procedure Partition



(A) Only increase j by 1.

(B)  $i \leftarrow i + 1$ .  $A[i] \leftrightarrow A[j]$ .  $j \leftarrow j + 1$ .

5

# The Operation of Partition(A, p, r): Example

| i | p, j             | 8 | 7      | 1      | 3      | 5      | 6 | r<br>4      | (1) |
|---|------------------|---|--------|--------|--------|--------|---|-------------|-----|
|   | p, i             | j | I      |        |        | I      | I | r           |     |
|   | 2                | 8 | 7      | 1      | 3      | 5      | 6 | 4           | (2) |
|   | p, i             |   | j      |        |        |        |   | r           | (-) |
|   | 2                | 8 | 7      | 1      | 3      | 5      | 6 | 4           | (3) |
|   | p, i             |   |        | j      |        |        |   | r           | (5) |
|   | $\frac{p, 1}{2}$ | 8 | 7      | ]<br>1 | 3      | 5      | 6 | 4           | (4) |
|   |                  | i |        |        |        |        |   |             | (4) |
|   | p<br>2           | 1 | 7      | 8      | j<br>3 | 5      | 6 | r<br>4      | (5) |
|   |                  | • |        | 0      | 5      |        | 0 |             | (5) |
|   | p<br>2           | 1 | i<br>3 | 8      | 7      | j<br>5 | 6 | r           |     |
|   | <u> </u>         | L |        | 0      | /      | 5      |   | 4           | (6) |
|   | <u>р</u>         |   | i      | 1      |        | 1      | j | r           |     |
|   | 2                | 1 | 3      | 8      | 7      | 5      | 6 | 4           | (7) |
|   | <u>p</u>         |   | i      |        |        |        |   | <u>j, r</u> |     |
|   | 2                | 1 | 3      | 8      | 7      | 5      | 6 | 4           | (8) |
|   | р                |   | i      |        |        |        |   | j, r        |     |
|   | 2                | 1 | 3      | 4      | 7      | 5      | 6 | 8           | (9) |
|   | L                | 1 |        |        |        |        |   |             |     |

6

#### The Partition (A, p, r) Algorithm

```
Partition(A, p, r)
{
 // A[r] is the pivot element
 x = A[r];
 i = p - 1;
 for (j = p \text{ to } r-1) {
  if (A[j] <= x) {
   i = i+1;
   exchange A[i] and A[j]
  }
 }
 // put pivot in position
 exchange A[i+1] and A[r]
 // q = i+1
 return i+1;
}
```

# The Running Time of Partition(A, p, r)

comparison of array elements assignment, addition, comparison of loop variables

Partition(A, p, r):

$$x = A[r]$$

$$i = p - 1$$

$$i = p - 1$$

$$for \ j = p \text{ to } r - 1$$

$$if \ A[j] \le x$$

$$(r - p)$$

$$i = i + 1$$

$$(r - p)$$

$$\leq (r - p)$$

$$exchange \ A[i] \leftrightarrow A[j]$$

$$\leq 3(r - p)$$

$$exchange \ A[i + 1] \leftrightarrow A[r]$$

$$for \ j = p \text{ to } r - 1$$

$$for \ j = p \text{ to } r - 1$$

$$\leq (r - p)$$

$$\leq 3(r - p)$$

$$\leq 3(r - p)$$

$$\leq 1$$

Total: (r - p) and  $\leq \{6(r - p) + 6\}$ Running time is  $\Theta(r - p)$ , that is, linear in the length of the array A[p..r].

# Randomized-Partition(A, p, r)

**The Idea:** In the algorithm Partition(A, p, r), A[r] is always used as the pivot x to partition the array A[p..r].

In the algorithm Randomized-Partition(A, p, r), we randomly choose an  $j, p \le j \le r$ , and use A[j] as pivot.

```
Randomized-Partition(A, p, r)
{
  j = random(p, r);
  exchange A[r] and A[j]
  Partition(A, p, r);
}
```

**Remark:** random (p, r) is a pseudorandom-number generator that returns a random number between p and r.

# Randomized-Select(A, p, r, i), $1 \le i \le r - p + 1$

**Problem:** Select the *i*th smallest element in A[p..r], where  $1 \le i \le r - p + 1$ .

**Solution:** Apply Randomized-Partition(A, p, r), getting



**Case 1:** i = k, pivot is the solution.

- **Case 2:** i < k, the *i*th smallest element in A[p..r] must be the *i*th smallest element in A[p..q-1].
- **Case 3:** i > k, the *i*th smallest element in A[p..r] must be the (i k)th smallest element in A[q + 1..r].

If necessary, recursively call the same procedure to the subarray.

# Randomized-Select(A, p, r, i), $1 \le i \le r - p + 1$

if p == rreturn A[p] q = Randomized-Partition(A, p, r) k = q - p + 1if i == k the pivot is the answer return A[q]else if i < kreturn Randomized-Select(A, p, q - 1, i)else

```
return Randomized-Select(A, q + 1, r, i - k)
```

**Remark:** To find the *i*th smallest element in A[1..n], call Randomized-Select(A, 1, n, i).

## Running Time of Randomized-Select(A, 1, n, i)

Let T(n, i) be the average number of comparisons of array elements for  $1 \le i \le n$ .

Then T(1,1) = 0 and for n > 1 we get

$$T(n,i) = (n-1)$$
  

$$+\frac{1}{n} \{\sum_{k=1}^{i-1} T(n-k,i-k)$$
recursion,  $k < i$   

$$+\sum_{k=i+1}^{n} T(k-1,i) \}$$
recursion,  $k > i$ 

We will prove by induction on n that

$$T(n,i) < 4 n$$

for all n and i.

### **Proof that** T(n, i) < 4 n

Induction basis:  $T(1,1) = 0 < 4 \cdot 1$ . Induction step: Assume that T(m,j) < 4 m for all m < n and  $1 \le j \le m$ . Then

T(n,i)

$$= n - 1 + \frac{1}{n} \{ \sum_{k=1}^{i-1} T(n-k, i-k) + \sum_{k=i+1}^{n} T(k-1, i) \}$$
  

$$< n - 1 + \frac{1}{n} \{ \sum_{k=1}^{i-1} 4(n-k) + \sum_{k=i+1}^{n} 4(k-1) \}$$
  

$$= n - 1 + \frac{1}{n} \{ 4n(i-1) - 4\frac{i(i-1)}{2} + 4\frac{n(n-1)}{2} - 4\frac{i(i-1)}{2} \}$$
  

$$= n - 1 + \frac{1}{n} \{ 2n^2 - 6n + (4n+4)i - 4i^2 \}.$$

### **Proof that** T(n,i) < 4 n

$$T(n,i) < n-1 + \frac{1}{n}f(i),$$

where

 $f(x) = 2n^{2} - 6n + (4n + 4)x - 4x^{2}.$ f'(x) = (4n + 4) - 8x = 0f''(x) = -8 < 0

for x = (n+1)/2. Hence

$$f(x) \le f((n+1)/2) = 3n^2 - 4n + 1$$

for all x. Therefore

$$T(n,i) \le n-1+3n-4+\frac{1}{n} < 4n.$$

14

# Running Time of Randomized-Select(A, 1, n, i)

We proved that T(n, i) < 4n. Since  $T(n, i) \ge n - 1$ , we have in particular that

$$T(n,i) = \Theta(n).$$

## Randomized-Quicksort Algorithm

We make use of the Randomized-Partition idea to develop a new version of quicksort.

```
Randomized-Quicksort(A, p, r)
{
  if (p < r) {
    q = Randomized-Partition(A, p, r);
    Randomized-Quicksort(A, p, q-1);
    Randomized-Quicksort(A, q+1, r);
  }
}</pre>
```

Does it run faster than the original version of quicksort?

### **Running Time of the Randomized-Quicksort**

**Results**:

Worst Case:  $T(n) = \Theta(n^2)$ . Average Case:  $T(n) = O(n \log n)$ .

Clearly, the worst case is still  $\Theta(n^2)$ , what about the average case?

Key observations:

- The running time of (randomized) quicksort is dominated by the time spent in (randomized) partition.
   In the partition procedure, the time is dominated by the *number of key comparisons*.
- When a pivot is selected, the pivot is compared with every other elements, then the elements are partitioned into two parts accordingly.
- Elements in different partition are NEVER compared with each other in *all* operations.

Tricks: We find the *expected* number of comparisons for **all** randomized-partition calls.

Let A be the input array which is a permutation of the n distinct elements  $z_1 < z_2 < \ldots < z_n$ .

Let X be the total number of comparisons performed in ALL calls to randomized-partition. Let  $X_{ij}$  be the number of comparisons between  $z_i$  and  $z_j$ , observe that  $X_{ij}$  can only be 0 or 1. Our goal is to compute the expected value of X, i.e.,

$$E[X] = E[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}]$$
  

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E[X_{ij}]$$
  

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} [Pr\{z_i \text{ is compared to } z_j\} \times 1$$
  

$$+ Pr\{z_i \text{ is not compared to } z_j\} \times 0]$$
  

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Pr\{z_i \text{ is compared to } z_j\}$$

It remains to show how to find  $Pr\{z_i \text{ is compared to } z_j\}$ .

For  $1 \leq i \leq j \leq n$ , let  $Z_{ij} = \{z_i, z_{i+1}, \dots, z_j\}$ (remember  $z_i < z_{i+1} < \dots < z_j$ ).

Key observations:

- If z<sub>i</sub> or z<sub>j</sub> is selected as a pivot BEFORE any elements in {z<sub>i+1</sub>, z<sub>i+2</sub>, ..., z<sub>j-1</sub>}, z<sub>i</sub> and z<sub>j</sub> will be compared.
- Conversely, if any element in  $Z_{ij}$  other then  $z_i$  or  $z_j$  is selected as a pivot before  $z_i$  and  $z_j$ ,  $z_i$  and  $z_j$  will be placed in DIFFERENT partitions, and hence they will NOT compare with each other in ALL randomized-partition calls.
- ANY element other than the elements in Z<sub>ij</sub> has no effect to Pr{z<sub>i</sub> is compared to z<sub>j</sub>}.

It remains to find the probability that  $z_i$  or  $z_j$  is the first pivot chosen from  $Z_{ij}$ .

$$Pr\{z_i \text{ is compared to } z_j\}$$

$$= Pr\{z_i \text{ or } z_j \text{ is the first pivot chosen from } Z_{ij}\}$$

$$= Pr\{z_i \text{ is the first pivot chosen from } Z_{ij}\}$$

$$+ Pr\{z_j \text{ is the first pivot chosen from } Z_{ij}\}$$

$$= \frac{1}{j-i+1} + \frac{1}{j-i+1}$$

$$= \frac{2}{j-i+1}$$

Putting everything together, we have

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$
  
= 
$$\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$
  
< 
$$\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$
  
= 
$$\sum_{i=1}^{n-1} O(\lg n)$$
  
= 
$$O(n \lg n)$$

Hence, the expected number of comparisons is  $O(n \lg n)$ , which is the average running time of Randomized-Quicksort.