Lecture 4: The Linear Time Selection

Selection Problem

Given a sequence of numbers (a1,...,an), and an
Integer 7, 1 < 7 < n, find the :th smallest element.
When ¢ = [n/2], itis called the median problem.

Example: Given (1,8,23,10,19,33,100), the 4th
smallest element is 19.

Question: How do you solve this problem?

First Solution: Selection by sorting

Step 1: Sortthe elements in ascending order with any
algorithm of complexity O(nlogn).

Step 2: Return the :th element of the sorted array.

The complexity of this solution is O(nlogn).
Question: Can we do better?

Answer: YES, but we need to recall Partition(A, p, r)
used in Quicksort!

Second Solution : Linear running time in average

Recall of Partition(A, p, r)

Definition: Rearrange the array A[p..r] into two (pos-
sibly empty) subarrays A[p..q — 1] and Al[q + 1..7]
such that

Alu] < Alg] < Alv]
foranyp<u<g—1landg+1<v<r.

P g r
X

IN

>
/

><

X = Alrl

(1) The original A[r] is used as the pivot.
(2) It is a deterministic algorithm.
(3) The element for the gth position is found!

Note that this partition is different from the partition we
used in COMP 171.

The ldea of Partition(A, p, r)

P i j r
[L[] X

= X = X unrestricted

(1) Initially (¢,7) = (p — 1, p).

(2) Increase j by 1 each time to find a place for A[j].
At the same time increase ¢ when necessary.

(3) The procedure stops when j = r.

One Iteration of the Procedure Partition

P i j r

=z ~. X .
=7 ¢ | (A) All] > X
p i j r
HER X

= X ~ X

P i J r

é X ‘ >~ X ‘ .

_ (B) A[j] <x

p Vi j r

= X = X

(A) Only increase 5 by 1.

(B) i + i+ 1. A[i] & A[j]. j <« j + 1.

The Operation of Partition(A, p, r): Example

i P r
28,7 1/3|5/6|4 (1)
i] r
218/ 7/1/3|5/6]|4 (2)
p | J r
21817113 |5/6]|4 (3)
p | J r
218/ 711/3|5|/6 |4 (4)
P 1 J r
21117,8]13|5/6|4 (5)
P i J r
211,3|18|7]5/6]|4 (6)
P | j T
211,3|18|7|5|6]|4 (7)
P | Jr T
211,3|18|7|5|/6]|4 (8)
P | o T
211/3|14|17|/5|6/|8 (9)

The Partition(A, p, r) Algorithm

Partition(A, p, r)
{
// Alr] 1s the pivot element
x = Alr];
1 = p-1;
for (j = p to r-1) {
if (A[J] <= x) |
i = 1+1;
exchange A[i1] and A[j]
}
}

// put pivot in position
exchange A[i+1] and A[r]
// g = 1+1
return i+1;

The Running Time of Partition(A, p, r)

comparison of array elements
assignment, addition, comparison of loop variables

Partition(A, p, r):

x = Alr] 1
1=p—1 1
forj=ptor—1 2(r — p)
if Alj] <=z (r —p)
i=1i+1 <(r—p)

exchange A[i] <+ A[j] < 3(r —p)
exchange A[i + 1] < A[r] 3
return: + 1 1

Total: (» — p) and < {6(r — p) + 6}
Running time is ©(r — p) , that is, linear in the length
of the array Al[p..r].

Randomized-Partition(A, p, r)

The Idea: In the algorithm Partition(A, p, r), A[r] is al-
ways used as the pivot x to partition the array A[p..r].

In the algorithm Randomized-Partition(A, p,), we ran-
domly choose an 7, p < j < r, and use A[j] as pivot.

Randomized-Partition(A, p, r)
{
jJ = random(p, r);
exchange A[r] and A[j]
Partition (A, p, r);
}

Remark: random (p, r) Isapseudorandom-number
generator that returns a random number between p
and r.

Randomized-Select(A,p,r,i1), 1 <i<r—p-+1

Problem: Select the ith smallest element in A[p..r],
wherel <i:<r—p-+1.

Solution: Apply Randomized-Partition(A, p, r), getting
p g r

T kth element
kK=q-p+1

Case 1. i = k, pivot is the solution.

Case 2: i < k, the ith smallest element in A[p..r] must be the
ith smallest element in A[p..q — 1].

Case 3: 7 > k, the ith smallest element in A[p..r] must be the
(7 — k)th smallest element in A[g + 1..r].

If necessary, recursively call the same procedure to the subar-

ray.

10

Randomized-Select(A,p,r,71), 1 <i<r—p-+1

ifp==r
return A[p]
g = Randomized-Partition(A, p, r)
k=q—p+1
if 1 ==k the pivot is the answer
return A[q]
elseif: < k
return Randomized-Select(A,p,q — 1,17)
else
return Randomized-Select(A,q + 1,7,i — k)

Remark: To find the ith smallest element in A[1..n],
call Randomized-Select(A, 1, n, 7).

11

Running Time of Randomized-Select(A, 1, n, 1)

Let T'(n, 1) be the average number of comparisons of
array elements for 1 < i < n.

ThenT'(1,1) = 0 and for n > 1 we get
T(n,1)) =(n—1) initial partition
"‘%{2712_:11 T(n—k,1—k) recursion, k < %

+ ZZ’:i+1 T(k—1,4)} recursion, k > 1

We will prove by induction on n that
T(n,i) < 4n

for all n and .

12

Proof that T'(n,?) < 4n

Induction basis: T(1,1) =0< 4 - 1.
Induction step: Assume that T'(m, j) < 4m
forallm <nand 1 < j <m. Then

T(n,1)
= n—1+ {ZT(n—kz—k)—I— Z T(k—1,:)}
=i+1
< n—1+ {Z4(n—k)+ Z 4(k — 1)}
=i+1
_ z(z—l)+4n(n—1)_4z’(i—1)}

n—l—l—;{4n(i—1)—4 5 5

= n-—1 +l{2n2 — 6n + (4n + 4)i — 4i%}.
n

13

Proof that T'(n,7) < 4n

T(n,i) <n—1+ 1),
where
f(z) =2n° —6n+ (4n + 4)x — 42°.
f'(z) =(4n+4) -8z =0
f'(z) =-8<0
forx = (n 4+ 1)/2. Hence

f(z) < f((n+1)/2) =3n° —4n+1

for all x. Therefore

1
T(n,i)) <n—14+3n—-—4+ — < 4n.
n

14

Running Time of Randomized-Select(A, 1, n, 1)

We proved that T'(n,i) < 4n. Since T'(n,t) > n— 1,
we have in particular that

T(n,i) = ©(n).

15

Randomized-Quicksort Algorithm

We make use of the Randomized-Partition idea to de-
velop a new version of quicksort.

Randomized-Quicksort (A, p, r)

{

1if (p < r) {
g = Randomized-Partition (A, p, r);
Randomized-Quicksort (A, p, g-1);
Randomized-Quicksort (A, gtl, 1);

}

}

Does it run faster than the original version of quick-
sort?

16

Running Time of the Randomized-Quicksort

Results :

Worst Case: T'(n) = ©(n?).
Average Case: T'(n) = O(nlogn).

Clearly, the worst case is still ©(n?), what about the
average case?

17

Average running time of Randomized-Quicksort

Key observations:

e The running time of (randomized) quicksort is dom-
inated by the time spent in (randomized) partition.
In the partition procedure, the time is dominated
by the number of key comparisons.

e When a pivot Is selected, the pivot is compared
with every other elements, then the elements are
partitioned into two parts accordingly.

e Elements in different partition are NEVER com-
pared with each other in all operations.

Tricks: We find the expected number of comparisons
for all randomized-partition calls.

18

Average running time of Randomized-Quicksort

Let A be the input array which is a permutation of the
n distinct elements z1 < 20 < ... < zp.

Let X be the total number of comparisons performed
In ALL calls to randomized-partition. Let X;; be the
number of comparisons between z; and z;, observe
that X;; can only be 0 or 1. Our goal is to compute
the expected value of X, i.e.,

n

n—1
E[X] = E[> > Xl

i=1 j=i+1
n—1 n
= > Y. E[X;]
i=1 j=i+1
n—1 n
= > Y [Pr{ziscomparedto z;} x 1
i=1 j=i+1
+ Pr{z; is not compared to z;} x 0]
n—1 n

= >) Pr{ziscomparedto z;}
i=1 j=i+1

19

Average running time of Randomized-Quicksort

It remains to show how to find Pr{z; is compared to z; }.

For1 < i < j < mn,let Z;; = {2;,2i41,---,%}
(remember z; < z;41 < ... < 2j).

Key observations:

o If z; or z; Is selected as a pivot BEFORE any el-
ements in {Zz'—|—17 Zi42y .- ,Zj_l}, 2 and Zj will
be compared.

o Conversely, if any element in Z;; other then z; or
zj Is selected as a pivot before z; and z;, z; and
Zj will be placed in DIFFERENT partitions, and
hence they will NOT compare with each other in
ALL randomized-partition calls.

e ANY element other than the elements in Z;; has
no effect to Pr{z; is compared to z;}.

20

Average running time of Randomized-Quicksort

It remains to find the probability that z; or z; is the first
pivot chosen from Z;;.

Pr{z; is compared to z;}
Pr{z; or z; is the first pivot chosen from Z;;}
Pr{z; is the first pivot chosen from Z;;}

+ Pr{z; is the first pivot chosen from Z;;}

1 1
= — + —
j—t+1 j57—141
2

j—i+1

21

Average running time of Randomized-Quicksort

Putting everything together, we have

1

3
|

E[X]

.

[
e
RAINGE
~
|

3
|

3@

|
Y
™

|
|_l

~.
I
—_

3
|

Hence, the expected number of comparisonsis O(nlgn),
which is the average running time of Randomized-
Quicksort.

22

