Lecture 4: The Linear Time Selection

Selection Problem

Given a sequence of numbers $\left\langle a_{1}, \ldots, a_{n}\right\rangle$, and an integer $i, 1 \leq i \leq n$, find the i th smallest element. When $i=\lceil n / 2\rceil$, it is called the median problem.

Example: Given $\langle 1,8,23,10,19,33,100\rangle$, the 4 th smallest element is 19 .

Question: How do you solve this problem?

First Solution: Selection by sorting

Step 1: Sort the elements in ascending order with any algorithm of complexity $O(n \log n)$.

Step 2: Return the i th element of the sorted array.

The complexity of this solution is $O(n \log n)$.
Question: Can we do better?

Answer: YES, but we need to recall Partition (A, p, r) used in Quicksort!

Second Solution : Linear running time in average

Recall of Partition (A, p, r)
Definition: Rearrange the array $A[p . . r]$ into two (possibly empty) subarrays $A[p . . q-1]$ and $A[q+1 . . r]$ such that

$$
A[u] \leq A[q]<A[v]
$$

for any $p \leq u \leq q-1$ and $q+1 \leq v \leq r$.

(1) The original $A[r]$ is used as the pivot.
(2) It is a deterministic algorithm.
(3) The element for the q th position is found!

Note that this partition is different from the partition we used in COMP 171.

The Idea of Partition (A, p, r)

(1) Initially $(i, j)=(p-1, p)$.
(2) Increase j by 1 each time to find a place for $A[j]$. At the same time increase i when necessary.
(3) The procedure stops when $j=r$.

One Iteration of the Procedure Partition

(A) Only increase j by 1 .
(B) $i \leftarrow i+1 . A[i] \leftrightarrow A[j] . j \leftarrow j+1$.

The Operation of Partition (A, p, r) : Example

$$
\begin{align*}
& \tag{7}\\
& \tag{8}\\
&
\end{align*}
$$

The Partition (A, p, r) Algorithm

```
Partition(A, p, r)
{
    // A[r] is the pivot element
    x = A[r];
    i = p-1;
    for (j = p to r-1) {
        if (A[j] <= x) {
        i = i+1;
            exchange A[i] and A[j]
        }
    }
```

 // put pivot in position
 exchange \(\mathrm{A}[\mathrm{i}+1]\) and \(\mathrm{A}[r]\)
 // q = i+1
 return i+1;
 \}

The Running Time of Partition (A, p, r)

comparison of array elements
assignment, addition, comparison of loop variables

Partition (A, p, r) :

$$
\begin{array}{ll}
x=A[r] & 1 \\
i=p-1 & 1 \\
\text { for } j=p \text { to } r-1 & 2(r-p) \\
\quad \text { if } A[j] \leq x & (r-p) \\
\quad i=i+1 & \leq(r-p) \\
\quad \text { exchange } A[i] \leftrightarrow A[j] & \leq 3(r-p) \\
\text { exchange } A[i+1] \leftrightarrow A[r] & 3 \\
\text { return } i+1 & 1
\end{array}
$$

Total: $(r-p)$ and $\leq\{\sigma(r-p)+\sigma\}$
Running time is $\Theta(r-p)$, that is, linear in the length of the array $A[p . . r]$.

Randomized-Partition (A, p, r)

The Idea: In the algorithm Partition $(A, p, r), A[r]$ is always used as the pivot x to partition the array $A[p . . r]$.

In the algorithm Randomized-Partition (A, p, r), we randomly choose an $j, p \leq j \leq r$, and use $A[j]$ as pivot.

```
Randomized-Partition(A, p, r)
{
    j = random(p, r);
    exchange A[r] and A[j]
    Partition(A, p, r);
}
```

Remark: random (p, r) is a pseudorandom-number generator that returns a random number between p and r.

Randomized-Select $(A, p, r, i), 1 \leq i \leq r-p+1$

Problem: Select the i th smallest element in $A[p . . r]$, where $1 \leq i \leq r-p+1$.

Solution: Apply Randomized-Partition (A, p, r), getting

$$
k=q-p+1
$$

Case 1: $i=k$, pivot is the solution.
Case 2: $i<k$, the i th smallest element in $A[p . . r]$ must be the i th smallest element in $A[p . . q-1]$.

Case 3: $i>k$, the i th smallest element in $A[p . . r]$ must be the ($i-k$)th smallest element in $A[q+1 . . r]$.

If necessary, recursively call the same procedure to the subarray.

Randomized-Select $(A, p, r, i), 1 \leq i \leq r-p+1$

if $p==r$
return $A[p]$
$q=$ Randomized-Partition (A, p, r)
$k=q-p+1$
if $i==k$
the pivot is the answer
return $A[q]$
else if $i<k$
return Randomized-Select($A, p, q-1, i$)
else
return Randomized-Select $(A, q+1, r, i-k)$
Remark: To find the i th smallest element in $A[1 . . n]$, call Randomized-Select $(A, 1, n, i)$.

Running Time of Randomized-Select $(A, 1, n, i)$

Let $T(n, i)$ be the average number of comparisons of array elements for $1 \leq i \leq n$.

Then $T(1,1)=0$ and for $n>1$ we get

$$
\begin{aligned}
T(n, i)=(n-1) & \text { initial partition } \\
+\frac{1}{n}\left\{\sum_{k=1}^{i-1} T(n-k, i-k)\right. & \text { recursion, } k<i \\
\left.+\sum_{k=i+1}^{n} T(k-1, i)\right\} & \text { recursion, } k>i
\end{aligned}
$$

We will prove by induction on n that

$$
T(n, i)<4 n
$$

for all n and i.

Proof that $T(n, i)<4 n$

Induction basis: $T(1,1)=0<4 \cdot 1$. Induction step: Assume that $T(m, j)<4 m$ for all $m<n$ and $1 \leq j \leq m$. Then

$$
\begin{aligned}
& T(n, i) \\
& \quad=n-1+\frac{1}{n}\left\{\sum_{k=1}^{i-1} T(n-k, i-k)+\sum_{k=i+1}^{n} T(k-1, i)\right\} \\
& \quad<n-1+\frac{1}{n}\left\{\sum_{k=1}^{i-1} 4(n-k)+\sum_{k=i+1}^{n} 4(k-1)\right\} \\
& =n-1+\frac{1}{n}\left\{4 n(i-1)-4 \frac{i(i-1)}{2}+4 \frac{n(n-1)}{2}-4 \frac{i(i-1)}{2}\right\} \\
& \quad=n-1+\frac{1}{n}\left\{2 n^{2}-6 n+(4 n+4) i-4 i^{2}\right\} .
\end{aligned}
$$

Proof that $T(n, i)<4 n$

$$
T(n, i)<n-1+\frac{1}{n} f(i)
$$

where

$$
\begin{gathered}
f(x)=2 n^{2}-6 n+(4 n+4) x-4 x^{2} \\
f^{\prime}(x)=(4 n+4)-8 x=0 \\
f^{\prime \prime}(x)=-8<0
\end{gathered}
$$

for $x=(n+1) / 2$. Hence

$$
f(x) \leq f((n+1) / 2)=3 n^{2}-4 n+1
$$

for all x. Therefore

$$
T(n, i) \leq n-1+3 n-4+\frac{1}{n}<4 n
$$

Running Time of Randomized-Select($A, 1, n, i$)

We proved that $T(n, i)<4 n$. Since $T(n, i) \geq n-1$, we have in particular that

$$
T(n, i)=\Theta(n)
$$

Randomized-Quicksort Algorithm

We make use of the Randomized-Partition idea to develop a new version of quicksort.

```
Randomized-Quicksort(A, p, r)
{
    if (p < r) {
        q = Randomized-Partition(A, p, r);
        Randomized-Quicksort(A, p, q-1);
        Randomized-Quicksort(A, q+1, r);
    }
}
```

Does it run faster than the original version of quicksort?

Running Time of the Randomized-Quicksort

Results:

Worst Case: $T(n)=\Theta\left(n^{2}\right)$.
Average Case: $T(n)=O(n \log n)$.

Clearly, the worst case is still $\Theta\left(n^{2}\right)$, what about the average case?

Average running time of Randomized-Quicksort

Key observations:

- The running time of (randomized) quicksort is dominated by the time spent in (randomized) partition. In the partition procedure, the time is dominated by the number of key comparisons.
- When a pivot is selected, the pivot is compared with every other elements, then the elements are partitioned into two parts accordingly.
- Elements in different partition are NEVER compared with each other in all operations.

Tricks: We find the expected number of comparisons for all randomized-partition calls.

Average running time of Randomized-Quicksort

Let A be the input array which is a permutation of the n distinct elements $z_{1}<z_{2}<\ldots<z_{n}$.

Let X be the total number of comparisons performed in ALL calls to randomized-partition. Let $X_{i j}$ be the number of comparisons between z_{i} and z_{j}, observe that $X_{i j}$ can only be 0 or 1 . Our goal is to compute the expected value of X, i.e.,

$$
\begin{aligned}
E[X] & =E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right] \\
= & \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right] \\
= & \sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left[\operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\} \times 1\right. \\
& \left.\quad+\operatorname{Pr}\left\{z_{i} \text { is not compared to } z_{j}\right\} \times 0\right] \\
= & \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left\{z_{i} \text { is compared to } z_{j}\right\}
\end{aligned}
$$

Average running time of Randomized-Quicksort

It remains to show how to find $\operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$.
For $1 \leq i \leq j \leq n$, let $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$ (remember $z_{i}<z_{i+1}<\ldots<z_{j}$).

Key observations:

- If z_{i} or z_{j} is selected as a pivot BEFORE any elements in $\left\{z_{i+1}, z_{i+2}, \ldots, z_{j-1}\right\}, z_{i}$ and z_{j} will be compared.
- Conversely, if any element in $Z_{i j}$ other then z_{i} or z_{j} is selected as a pivot before z_{i} and z_{j}, z_{i} and z_{j} will be placed in DIFFERENT partitions, and hence they will NOT compare with each other in ALL randomized-partition calls.
- ANY element other than the elements in $Z_{i j}$ has no effect to $\operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$.

Average running time of Randomized-Quicksort

It remains to find the probability that z_{i} or z_{j} is the first pivot chosen from $Z_{i j}$.
$\operatorname{Pr}\left\{z_{i}\right.$ is compared to $\left.z_{j}\right\}$
$=\operatorname{Pr}\left\{z_{i}\right.$ or z_{j} is the first pivot chosen from $\left.Z_{i j}\right\}$
$=\operatorname{Pr}\left\{z_{i}\right.$ is the first pivot chosen from $\left.Z_{i j}\right\}$ $+\operatorname{Pr}\left\{z_{j}\right.$ is the first pivot chosen from $\left.Z_{i j}\right\}$
$=\frac{1}{j-i+1}+\frac{1}{j-i+1}$
$=\frac{2}{j-i+1}$

Average running time of Randomized-Quicksort

Putting everything together, we have

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
& <\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k} \\
& =\sum_{i=1}^{n-1} O(\lg n) \\
& =O(n \lg n)
\end{aligned}
$$

Hence, the expected number of comparisons is $O(n \lg n)$, which is the average running time of RandomizedQuicksort.

