Lecture 3: The Polynomial Multiplication Problem

A More General Divide-and-Conquer Approach

Divide: Divide a given problem into subproblems (ideally of approximately equal size). No longer only TWO subproblems

Conquer: Solve each subproblem (directly or recursively), and

Combine: Combine the solutions of the subproblems into a global solution.

The Polynomial Multiplication Problem

 another divide-and-conquer algorithm
Problem:

Given two polynomials of degree n

$$
\begin{aligned}
& A(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \\
& B(x)=b_{0}+b_{1} x+\cdots+b_{n} x^{n}
\end{aligned}
$$

compute the product $A(x) B(x)$.

Example:

$$
\begin{aligned}
A(x) & =1+2 x+3 x^{2} \\
B(x) & =3+2 x+2 x^{2} \\
A(x) B(x) & =3+8 x+15 x^{2}+10 x^{3}+6 x^{4}
\end{aligned}
$$

Question: How can we efficiently calculate the coefficients of $A(x) B(x)$?
Assume that the coefficients a_{i} and b_{i} are stored in arrays $A[0 \ldots n]$ and $B[0 \ldots n]$.
Cost of any algorithm is number of scalar multiplications and additions performed.

Convolutions

$$
\text { Let } A(x)=\sum_{i=0}^{n} a_{i} x^{i} \text { and } B(x)=\sum_{i=0}^{m} b_{i} x^{i} \text {. }
$$

Set $C(x)=\sum_{k=0}^{n+m} c_{i} x^{i}=A(x) B(x)$.
Then

$$
c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}
$$

for all $0 \leq k \leq m+n$.
Definition: The vector $\left(c_{0}, c_{1}, \ldots, c_{m+n}\right)$ is the convolution of the vectors $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ and ($b_{0}, b_{1}, \ldots, b_{m}$).

Calculating convolutions (and thus polynomial multiplication) is a major problem in digital signal processing.

The Direct (Brute Force) Approach

$$
\text { Let } A(x)=\sum_{i=0}^{n} a_{i} x^{i} \text { and } B(x)=\sum_{i=0}^{n} b_{i} x^{i} \text {. }
$$

Set $C(x)=\sum_{k=0}^{2 n} c_{i} x^{i}=A(x) B(x)$ with

$$
c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}
$$

for all $0 \leq k \leq 2 n$.

The direct approach is to compute all c_{k} using the formula above. The total number of multiplications and additions needed are $\Theta\left(n^{2}\right)$ and $\Theta\left(n^{2}\right)$ respectively. Hence the complexity is $\Theta\left(n^{2}\right)$.

Questions: Can we do better?
Can we apply the divide-and-conquer approach to develop an algorithm?

The Divide-and-Conquer Approach

The Divide Step: Define

$$
\begin{aligned}
& A_{0}(x)=a_{0}+a_{1} x+\cdots+a_{\left\lfloor\frac{n}{2}\right\rfloor-1} x^{\left\lfloor\frac{n}{2}\right\rfloor-1} \\
& A_{1}(x)=a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lfloor\frac{n}{2}\right\rfloor+1} x+\cdots+a_{n} x^{n-\left\lfloor\frac{n}{2}\right\rfloor}
\end{aligned}
$$

Then $A(x)=A_{0}(x)+A_{1}(x) x^{\left\lfloor\frac{n}{2}\right\rfloor}$.

Similarly we define $B_{0}(x)$ and $B_{1}(x)$ such that

$$
B(x)=B_{0}(x)+B_{1}(x) x^{\left\lfloor\frac{n}{2}\right\rfloor}
$$

Then

$$
\begin{aligned}
A(x) B(x)= & A_{0}(x) B_{0}(x)+A_{0}(x) B_{1}(x) x^{\left\lfloor\frac{n}{2}\right\rfloor}+ \\
& A_{1}(x) B_{0}(x) x^{\left\lfloor\frac{n}{2}\right\rfloor}+A_{1}(x) B_{1}(x) x^{2\left\lfloor\frac{n}{2}\right\rfloor}
\end{aligned}
$$

Remark: The original problem of size n is divided into 4 problems of input size $\frac{n}{2}$.

Example:

$$
\begin{aligned}
A(x)= & 2+5 x+3 x^{2}+x^{3}-x^{4} \\
B(x)= & 1+2 x+2 x^{2}+3 x^{3}+6 x^{4} \\
A(x) B(x)= & 2+9 x+17 x^{2}+23 x^{3}+34 x^{4}+39 x^{5} \\
& +19 x^{6}+3 x^{7}-6 x^{8}
\end{aligned}
$$

$$
\left.\begin{array}{l}
\begin{array}{l}
A_{0}(x)=2+5 x, \\
A_{1}(x)=3+x-x^{2}, \\
A_{0}(x)=A_{0}(x)+A_{1}(x) x^{2}
\end{array} \\
B_{0}(x)=1+2 x, \\
B_{1}(x)=2+3 x+6 x^{2}, \\
B(x)=B_{0}(x)+B_{1}(x) x^{2}
\end{array}\right\} \begin{aligned}
A_{0}(x) B_{0}(x)=2+9 x+10 x^{2} \\
A_{1}(x) B_{1}(x)=6+11 x+19 x^{2}+3 x^{3}-6 x^{4} \\
A_{0}(x) B_{1}(x)=4+16 x+27 x^{2}+30 x^{3} \\
A_{1}(x) B_{0}(x)=3+7 x+x^{2}-2 x^{3} \\
A_{0}(x) B_{1}(x)+A_{1}(x) B_{0}(x)=7+23 x+28 x^{2}+28 x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& A_{0}(x) B_{0}(x)+\left(A_{0}(x) B_{1}(x)+A_{1}(x) B_{0}(x)\right) x^{2}+A_{1}(x) B_{1}(x) x^{4} \\
& =2+9 x+17 x^{2}+23 x^{3}+34 x^{4}+39 x^{5}+19 x^{6}+3 x^{7}-6 x^{8}
\end{aligned}
$$

The Divide-and-Conquer Approach

The Conquer Step: Solve the four subproblems, i.e., computing

$$
\begin{array}{ll}
A_{0}(x) B_{0}(x), & A_{0}(x) B_{1}(x) \\
A_{1}(x) B_{0}(x), & A_{1}(x) B_{1}(x)
\end{array}
$$

by recursively calling the algorithm 4 times.

The Divide-and-Conquer Approach

The Combining Step: Adding the following four polynomials

$$
\begin{aligned}
& A_{0}(x) B_{0}(x) \\
& \quad+A_{0}(x) B_{1}(x) x^{\left.n \frac{n}{2}\right\rfloor} \\
& \left.\quad+A_{1}(x) B_{0}(x) x^{n} \frac{n}{2}\right\rfloor \\
& \quad+A_{1}(x) B_{1}(x) x^{2\left\lfloor\frac{n}{2}\right\rfloor} .
\end{aligned}
$$

takes $\Theta(n)$ operations. Why?

The First Divide-and-Conquer Algorithm

PolyMulti1 $(A(x), B(x))$
\{

$$
\begin{aligned}
& A_{0}(x)=a_{0}+a_{1} x+\cdots+a_{\left\lfloor\frac{n}{2}\right\rfloor-1} x^{\left\lfloor\frac{n}{2}\right\rfloor-1} \\
& A_{1}(x)=a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lfloor\frac{n}{2}\right\rfloor+1} x+\cdots+a_{n} x^{n-\left\lfloor\frac{n}{2}\right\rfloor}
\end{aligned}
$$

$$
B_{0}(x)=b_{0}+b_{1} x+\cdots+b_{\left\lfloor\frac{n}{2}\right\rfloor-1} x^{\left\lfloor\frac{n}{2}\right\rfloor-1}
$$

$$
B_{1}(x)=b_{\left\lfloor\frac{n}{2}\right\rfloor}+b_{\left\lfloor\frac{n}{2}\right\rfloor+1} x+\cdots+b_{n} x^{n-\left\lfloor\frac{n}{2}\right\rfloor}
$$

$$
U(x)=\operatorname{PolyMulti1}\left(A_{0}(x), B_{0}(x)\right)
$$

$$
V(x)=\operatorname{PolyMulti1}\left(A_{0}(x), B_{1}(x)\right)
$$

$$
W(x)=\operatorname{PolyMulti} 1\left(A_{1}(x), B_{0}(x)\right)
$$

$$
Z(x)=\operatorname{PolyMulti1}\left(A_{1}(x), B_{1}(x)\right)
$$

$\operatorname{return}\left(U(x)+[V(x)+W(x)] x^{\left\lfloor\frac{n}{2}\right\rfloor}+Z(x) x^{2\left\lfloor\frac{n}{2}\right\rfloor}\right)$

Running Time of the Algorithm

Assume n is a power of $2, n=2^{h}$. By substitution (expansion),

$$
\begin{aligned}
T(n)= & 4 T\left(\frac{n}{2}\right)+c n \\
= & 4\left[4 T\left(\frac{n}{2^{2}}\right)+c \frac{n}{2}\right]+c n \\
= & 4^{2} T\left(\frac{n}{2^{2}}\right)+(1+2) c n \\
= & 4^{2}\left[4 T\left(\frac{n}{2^{3}}\right)+c \frac{n}{2^{2}}\right]+(1+2) c n \\
= & 4^{3} T\left(\frac{n}{2^{3}}\right)+\left(1+2+2^{2}\right) c n \\
& \vdots \\
= & 4^{i} T\left(\frac{n}{2^{i}}\right)+\sum_{j=0}^{i-1} 2^{j} c n \quad \text { (induction) } \\
& \vdots \\
= & 4^{h} T\left(\frac{n}{2^{h}}\right)+\sum_{j=0}^{h-1} 2^{j} c n \\
= & n^{2} T(1)+c n(n-1) \\
& \left(\text { since } n=2^{h} \text { and } \sum_{j=0}^{h-1} 2^{j}=2^{h}-1=n-1\right) \\
= & \Theta\left(n^{2}\right) .
\end{aligned}
$$

The same order as the brute force approach!

Comments on the Divide-and-Conquer Algorithm

Comments: The divide-and-conquer approach makes no essential improvement over the brute force approach!

Question: Why does this happen.

Question: Can you improve this divide-and-conquer algorithm?

Problem: Given 4 numbers

$$
A_{0}, A_{1}, B_{0}, B_{1}
$$

how many multiplications are needed to calculate the three values

$$
A_{0} B_{0}, A_{0} B_{1}+A_{1} B_{0}, A_{1} B_{1} ?
$$

This can obviously be done using 4 multiplications but there is a way of doing this using only the following 3 :

$$
\begin{aligned}
Y & =\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right) \\
U & =A_{0} B_{0} \\
Z & =A_{1} B_{1}
\end{aligned}
$$

U and Z are what we originally wanted and

$$
A_{0} B_{1}+A_{1} B_{0}=Y-U-Z
$$

Improving the Divide-and-Conquer Algorithm

Define

$$
\begin{aligned}
& Y(x)=\left(A_{0}(x)+A_{1}(x)\right) \times\left(B_{0}(x)+B_{1}(x)\right) \\
& U(x)=A_{0}(x) B_{0}(x) \\
& Z(x)=A_{1}(x) B_{1}(x)
\end{aligned}
$$

Then
$Y(x)-U(x)-Z(x)=A_{0}(x) B_{1}(x)+A_{1}(x) B_{0}(x)$. Hence $A(x) B(x)$ is equal to

$$
U(x)+[Y(x)-U(x)-Z(x)] x^{\left\lfloor\frac{n}{2}\right\rfloor}+Z(x) \times x^{2\left\lfloor\frac{n}{2}\right\rfloor}
$$

Conclusion: You need to call the multiplication procedure 3, rather than 4 times.

The Second Divide-and-Conquer Algorithm

PolyMulti2 $(A(x), B(x))$
\{

$$
\begin{aligned}
& A_{0}(x)=a_{0}+a_{1} x+\cdots+a_{\left\lfloor\frac{n}{2}\right\rfloor-1} x^{\left\lfloor\frac{n}{2}\right\rfloor-1} ; \\
& A_{1}(x)=a_{\left\lfloor\frac{n}{2}\right\rfloor}+a_{\left\lfloor\frac{n}{2}\right\rfloor+1} x+\cdots+a_{n} x^{n-\left\lfloor\frac{n}{2}\right\rfloor} ; \\
& B_{0}(x)=b_{0}+b_{1} x+\cdots+b_{\left\lfloor\frac{n}{2}\right\rfloor-1} x^{\left\lfloor\frac{n}{2}\right\rfloor-1} ; \\
& B_{1}(x)=b_{\left\lfloor\frac{n}{2}\right\rfloor}+b_{\left\lfloor\frac{n}{2}\right\rfloor+1} x+\cdots+b_{n} x^{n-\left\lfloor\frac{n}{2}\right\rfloor} ; \\
& Y(x)=\text { PolyMulti2} 2\left(A_{0}(x)+A_{1}(x), B_{0}(x)+B_{1}(x)\right) \\
& U(x)=\text { PolyMulti2 }\left(A_{0}(x), B_{0}(x)\right) ; \\
& Z(x)=\text { PolyMulti2 }\left(A_{1}(x), B_{1}(x)\right) ;
\end{aligned}
$$

return $\left(U(x)+[Y(x)-U(x)-Z(x)] x^{\left\lfloor\frac{n}{2}\right\rfloor}+Z(x) x^{2\left\lfloor\frac{n}{2}\right\rfloor}\right) ;$ \}

Running Time of the Modified Algorithm

Assume $n=2^{h}$. Let $\operatorname{Ig} x$ denote $\log _{2} x$.
By the substitution method,

$$
\begin{aligned}
T(n) & =3 T\left(\frac{n}{2}\right)+c n \\
& =3\left[3 T\left(\frac{n}{2^{2}}\right)+c \frac{n}{2}\right]+c n \\
& =3^{2} T\left(\frac{n}{2^{2}}\right)+\left(1+\frac{3}{2}\right) c n \\
& =3^{2}\left[3 T\left(\frac{n}{2^{3}}\right)+c \frac{n}{2^{2}}\right]+\left(1+\frac{3}{2}\right) c n \\
= & 3^{3} T\left(\frac{n}{2^{3}}\right)+\left(1+\frac{3}{2}+\left[\frac{3}{2}\right]^{2}\right) c n \\
& \vdots \\
= & 3^{h} T\left(\frac{n}{2^{h}}\right)+\sum_{j=0}^{h-1}\left[\frac{3}{2}\right]^{j} c n .
\end{aligned}
$$

We have

$$
3^{h}=\left(2^{\lg 3}\right)^{h}=2^{h \lg 3}=\left(2^{h}\right)^{\lg 3}=n^{\lg 3} \approx n^{1.585},
$$

and

$$
\sum_{j=0}^{h-1}\left[\frac{3}{2}\right]^{j}=\frac{(3 / 2)^{h}-1}{3 / 2-1}=2 \cdot \frac{3^{h}}{2^{h}}-2=2 n^{\lg 3-1}-2
$$

Hence

$$
T(n)=\Theta\left(n^{\lg 3} T(1)+2 c n^{\lg 3}\right)=\Theta\left(n^{\lg 3}\right)
$$

Comments

- The divide-and-conquer approach doesn't always give you the best solution.
Our original D-A-C algorithm was just as bad as brute force.
- There is actually an $O(n \log n)$ solution to the polynomial multiplication problem.
It involves using the Fast Fourier Transform algorithm as a subroutine.
The FFT is another classic D-A-C algorithm (Chapt 30 in CLRS gives details).
- The idea of using 3 multiplications instead of 4 is used in large-integer multiplications.
A similar idea is the basis of the classic Strassen matrix multiplication algorithm (CLRS, Chapter 28).

