Lecture 2: Maximum Contiguous Subarray Problem

Overview

- Reference: Chapter 8 in Programming Pearls, (2nd ed) by Jon Bentley.
- Clean way to illustrate basic algorithm design
- $\mathrm{A} \Theta\left(n^{3}\right)$ brute force algorithm
$-\mathrm{A} \Theta\left(n^{2}\right)$ algorithm that reuses data.
- A $\Theta(n \log n)$ divide-and-conquer algorithm
- Cost of algorithm will be number of primitive operations, e.g., comparisons and arithmetic operations, that it uses.

MCS Example

ACME CORP - PROFIT HISTORY

Year	1	2	3	4	5	6	7	8	9
Profit $\mathrm{M} \$$	-3	2	1	-4	5	2	-1	3	-1

Betweeen years 5 and 8 ACME earned $5+2-1+3=9$ Million Dollars

This is the MAXIMUM amount that ACME earned in any contiguous span of years.

Examples:
Between years 1 and 9 ACME earned
$-3+2+1-4+5+2-1+3-1=4 \mathrm{M} \$$ and between years 2 and 6
$2+1-4+5+2=6 \mathrm{M} \$$.

The Maximum Contiguous Subarray Problem is to find the span of years in which ACME earned the most, e.g., $(5,8)$.

Formal Definition

Input: An array of reals $A[1 \ldots N]$.

The value of subarray $A[i \ldots j]$ is

$$
V(i, j)=\sum_{x=i}^{j} A(x)
$$

The Maximum Contiguous subarray problem is to find $i \leq j$ such that

$$
\forall\left(i^{\prime}, j^{\prime}\right), V\left(i^{\prime}, j^{\prime}\right) \leq V(i, j)
$$

Output: $V(i, j)$ s.t. $\forall\left(i^{\prime}, j^{\prime}\right), \quad V\left(i^{\prime}, j^{\prime}\right) \leq V(i, j)$.

Note: Can modify the problem so it returns indices (i, j).

$\Theta\left(n^{3}\right)$ Solution: Brute Force

Idea: Calculate the value of $V(i, j)$ for each pair $i \leq j$ and return the maximum value.

```
VMAX=A[1];
for (i=1 to N) {
    for (j=i to N) {
        // calculate V(i, j)
        V=0;
        for (x= i to j)
        V=V+A[x];
        if (V > VMAX)
        VMAX=V;
    }
}
return VMAX;
```


$\Theta\left(n^{2}\right)$ solution: Reuse data

Idea: We don't need to calculate each $V(i, j)$ from "scratch" but can exploit the fact that

$$
V(i, j)=\sum_{x=i}^{j} A[x]=V(i, j-1)+A[j] .
$$

```
VMAX=A[1];
for (i=1 to N) {
    V=0;
    for (j=i to N) {
        // calculate V(i, j)
        V=V+A[j];
        if (V > VMAX)
        VMAX=V;
    }
}
return VMAX;
```


$\Theta(n \log n)$ solution: Divide-and-Conquer

Idea: Set $M=\lfloor(N+1) / 2\rfloor$.
Let A_{1} and A_{2} be the MCS that MUST contain $A[M]$ and $A[M+1]$ respectively. Note that the MCS must be one of

- S_{1} : The MCS in $A[1 \ldots M]$,
- S_{2} : The MCS in $A[M+1 \ldots N]$,
- $A:$ Where $A=A_{1} \cup A_{2}$.

A_1 = MCS on left containing $\mathrm{A}[\mathrm{M}] \quad \mathrm{A} _2=\mathrm{MCS}$ on right containing $\mathrm{A}[\mathrm{M}+1]$

$$
\mathrm{A}=\mathrm{A} _1 \mathrm{U} \text { A } _2
$$

Example

1	-5	4	2	-7	3	6	-1	2	-4	7	-10	2	6	1	-3

1	-5	4	2	-7	3	6	-1	2	-4	7	-10	2	6	1	-3

$S_{1}=[3,6]$ and $S_{2}=[2,6,1]$.
$A_{1}=[3,6,-1]$ and $A_{2}=[2,-4,7]$;
$A=A_{1} \cup A_{2}=[3,6,-1,2,-4,7]$

Since $\operatorname{Value}\left(S_{1}\right)=9, \operatorname{Value}\left(S_{2}\right)=9$
and $\operatorname{Value}(A)=13$
the solution to the problem is A.

Finding A : The conquer stage

A_{1} is in the form $A[i \ldots \mathrm{M}]$:
there are only $M-i+1$ such sequences, so, A_{1} can be found in $O(M-i)$ time.

```
MAX=A [M] ;
SUM=A [M] ;
for (k=M-1 down to i)
{
    SUM+=A [k];
    if (SUM > MAX) MAX=SUM;
}
A_1=MAX;
```

Similarly, A_{2} is in the form $A[\mathrm{M}+1 \ldots j]$:
there are only $j-M$ such sequences, so, A_{2} the maximum valued such one, can be found in $O(j-M)$ time.
$A=A_{1} \cup A_{2}$ can therefore be found in $O(j-i)$ time, which is linear to the input size.

The Full Divide-and-Conquer Algorithm

// Input : $A[i \ldots j]$ with $i \leq j$
// Output : the MCS of $A[i \ldots j]$
$\operatorname{MCS}(A, i, j)$

1. If $i==j$ return $A[i]$
2. Else
3. Find $\operatorname{MCS}\left(A, i,\left\lfloor\frac{i+j}{2}\right\rfloor\right)$;
4. Find $\operatorname{MCS}\left(A,\left\lfloor\frac{i+j}{2}\right\rfloor+1, j\right)$;
5. Find MCS that contains both $A\left[\left\lfloor\frac{i+j}{2}\right\rfloor\right]$ and $A\left[\left\lfloor\frac{i+j}{2}\right\rfloor+1\right]$;
6. Return Maximum of the three sequences found

A full example

Analysis of the DC Algorithm

Let $T(m)$ (where m is the problem size) be time needed to run

$$
M S C(A, i, j),(j-i+1=m)
$$

Step (1) requires O (1) time.
Steps (3) and (4) each require $T(m / 2)$ time.
Step (5) requires $O(m)$ time.
Step (6) requires $O(1)$ time

Then $T(1)=O(1)$ and for $n>1, T(n)=2 T(n / 2)+O(n)$

Analysis of the DC Algorithm

To simplify the analysis, we assume that n is a power of 2 .
$T(n) \leq 2 T\left(\frac{n}{2}\right)+c n$. Repeating this recurrence gives

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \leq 2\left[2 T\left(\frac{n}{2^{2}}\right)+c \frac{n}{2}\right]+c n \\
& =2^{2} T\left(\frac{n}{2^{2}}\right)+2 c n \\
& \leq 2^{2}\left[2 T\left(\frac{n}{2^{3}}\right)+c \frac{n}{2^{2}}\right]+2 c n \\
& =2^{3} T\left(\frac{n}{2^{3}}\right)+3 c n \\
& \leq \cdots \\
& =2^{h} T\left(\frac{n}{2^{h}}\right)+h c n
\end{aligned}
$$

Set $h=\log _{2} n$, so that $2^{h}=n$. With this substitudion, we have

$$
T(n) \leq n T(1)+\left(\log _{2} n\right) c n=O\left(n \log _{2} n\right) .
$$

Review

In this lecture we saw 3 different algorithms for solving the maximum contiguous subarray problem. They were

- $\mathrm{A} \Theta\left(n^{3}\right)$ brute force algorithm
- $\mathrm{A} \Theta\left(n^{2}\right)$ algorithm that reuses data.
- $\mathrm{A} \Theta(n \log n)$ divide-and-conquer algorithm

