Principles of Programming Languages

COMP251: Syntax and Grammars

Prof. Dekai Wu

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology Hong Kong, China

Fall 2007

Part I

Language Description

Language Description: Motivation

"Able was I ere I saw Elba." - about Napoléon

How do you know that this is English, and not French or Chinese?

Language Description

A language has 2 parts:
(1) Syntax

- lexical syntax
- describes how a sequence of symbols makes up tokens (lexicon) of the language
- checked by a lexical analyzer
- grammar
- describes how a sequence of tokens makes up a valid program.
- checked by a parser
(2) Semantics
specifies the meaning of a program

Compilation

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007, L1)

Example 1: English Language

A word $=$ some combination of the 26 letters, a,b,c, ...,z.

One form of a sentence $=$ Subject + Verb + Object.
e.g. The student wrote a great program.

Example 2: Date Format

A date like 06/04/2010 may be written in the general format:

$$
\begin{gathered}
\text { D D / D D / D D D D } \\
\text { where D }=0,1,2,3,4,5,6,7,8,9
\end{gathered}
$$

But, does 03/09/1998 mean Sept 3rd, or March 9th?

Example 3: Real Numbers (Simplified)

Examples of reals: $0.45 \quad 12.3 \quad .98$
Examples of non-reals: $2+4 \mathrm{i} \quad 1 \mathrm{a} 2 \mathrm{~b} \quad 8<$

Informal rules:

- In general, a real number has three parts:
- an integer part (I)
- a dot "." symbol (.)
- a fraction part (F)
- valid forms: I.F, .F
- I and F are strings of digits
- I may be empty but F cannot
- a digit is one of $\{0,1,2,3,4,5,6,7,8,9\}$

Expression: Examples

$$
\begin{array}{cc}
a+b & 3 * a+b / c \\
\frac{-b+\sqrt{b^{2}-4 * a * c}}{2 * a} & \frac{a *\left(1-R^{n}\right)}{1-R} \\
\text { if }(\mathrm{x}>10) \text { then } \\
\mathrm{x} /=10 \\
\text { else } \\
\mathrm{x} *=2
\end{array}
$$

c.f. "While I was coming to school, I saw a car accident." The sentence is in the form of: "While E_{1}, E_{2}."

Expression Notation: Example 4

Goal: Add a to b.

Abstract Syntax Tree

$$
\begin{array}{ll}
\text { Infix : } & a+b \\
\text { Prefix : } & +a b \\
\text { Postfix : } & a b+
\end{array}
$$

Abstract syntax tree is independent of notation.

Expression

- A constant or variable is an expression.
- In general, an expression has the form of a function:

$$
E \triangleq \mathbf{O p}\left(E_{1}, E_{2}, \ldots, E_{k}\right)
$$

where $\mathbf{O p}$ is the operator, and $E_{1}, E_{2}, \ldots, E_{k}$ are the operands.

- An operator with k operands is said to have an arity of k; and $\mathbf{O p}$ is an k-ary operator.
unary operator: $-x$
binary operator: $x+y$
ternary operator: $(x>y) ? x: y$

Infix, Prefix, Postfix, Mixfix

- Infix: $E_{1} \mathbf{O p} E_{2}$ (must be binary operator!)

$$
a+b, a * b, a-b, a / b, a==b, a<b
$$

- Prefix: Op $\quad E_{1} \quad E_{2} \ldots E_{k}$

$$
+a b, * a b,-a b, / a b,==a b,<a b .
$$

- Postfix: $E_{1} \quad E_{2} \ldots E_{k} \mathbf{O p}$

$$
a b+, a b *, a b-, a b /, a b==, a b<
$$

- Mixfix : e.g. if E_{1} then E_{2} else E_{3}

Abstract Syntax Tree

Expression Notation: Example 5

abstract syntax tree

$$
\begin{array}{ll}
\text { infix: } & 3 * a+b / c \\
\text { prefix : } & +* 3 a / b c \\
\text { postfix : } & 3 a * b c /+
\end{array}
$$

Note: Prefix and postfix notation does not require parentheses.

Expression Notation: Example 6

infix: $\quad\left(-b+\sqrt{b^{2}-4 * a * c}\right) /(2 * a)$
prefix: $\quad /+-b \sqrt{ }-* b b * * 4 a c * 2 a$
 postfix: $\quad b-b b * 4 a * c *-\sqrt{ }+2 a * /$

Postfix Evaluation: By a Stack

- infix expression: $3 * a+b / c$.
- postfix expression: $3 a * b c /+$.

Precedence and Associativity in C++

Operator		Description
Associativity		
[]	array element	LEFT
\cdot	structure member	
\rightarrow	pointer	
-	minus	RIGHT
++	increment	
--	decrement	
$*$	indirection	
$*$	multiply	LEFT
	divide	
$\%$	mod	
+	add	LEFT
-	subtract	
$==$	logical equal	LEFT
$=$	assignment	RIGHT

Example: $1 / 2+3 * 4=(1 / 2)+(3 * 4)$
because $*$, / has a higher precedence over,+- .

Precedence rules decide which operators run first. In general,

$$
x P y Q z=x P(y Q z)
$$

if operator Q is at a higher precedence level than operator P.

Associativity: Binary Operators

Example: $1-2+3-4=((1-2)+3)-4$
because + , - are left associative.
Associativity decides the grouping of operands with operators of the same level of precedence.
In general, if binary operator P, Q are of the same precedence level:

$$
x P y Q z=x P(y Q z)
$$

if operator P, Q are both right associative;

$$
x P \text { y } Q z=(x P y) Q z
$$

if operator P, Q are both left associative.
Question : What if + is left while - is right associative?

Associativity: Unary Operators

- Example in $\mathrm{C}++: * a++=*(a++)$ because all unary operators in $\mathrm{C}++$ are right-associative.
- In Pascal, all operators including unary operators are left-associative.
- In general, unary operators in many languages may be considered as non-associative as it is not important to assign an associativity for them, and their usage and semantics will decide their order of computation.
Question: Which of infix/prefix/postfix notation needs precedence or associative rules?

Summary on Syntax

$\sqrt{ }$ Will describe a language by a formal syntax and an informal semantics
$\sqrt{ }$ Syntax $=$ lexical syntax + grammar
$\sqrt{ }$ Expression notation: infix, prefix, postfix, mixfix Abstract syntax tree: independent of notation
$\sqrt{ }$ Precedence and associativity of operators decide the order of applying the operators

Part II

Grammar

Grammar：Motivation

What do the following sentences really mean？
－路不通行不得在此小便
－＂I saw a small kid on the beach with a binocular．＂
－What is the final value of x ？

$$
\begin{aligned}
& x=15 \\
& \text { if }(x>20) \text { then } \\
& \text { if }(x>30) \text { then } \\
& x=8 \\
& \text { else } \\
& x=9
\end{aligned}
$$

揚乃武與小白菜

Ambiguity in semantics is often caused by ambiguous grammar of the language．

A Formal Description: Example 7

```
1. \(<\) real-number \(>::=\quad<\) integer-part \(>.<\) fraction \(>\)
2. \(<\) integer-part \(>::=\) <empty \(>\mid<\) digit-sequence \(>\)
3. \(<\) fraction \(>::=<\) digit-sequence \(>\)
4. \(<\) digit-sequence \(>::=<\) digit \(>\mid<\) digit \(><\) digit-sequence \(>\)
5. \(<\) digit \(>\quad::=0|1| 2|3| 4|5| 6|7| 8 \mid 9\)
```

This is the context-free grammar of real numbers written in the Backus-Naur Form.

Context Free Grammar (CFG)

A context-free grammar has $\mathbf{4}$ components:
(1) A set of tokens or terminals:
atomic symbols of the language.
English: a, b, c,, z
Reals: $0,1,2,3,4,5,6,7,8,9$, .
(2) A set of nonterminals:
variables denoting language constructs.
English: $<$ Noun $>,<$ Verb $\rangle,<$ Adjective $>, \ldots$
Reals : <real-number \rangle,\langle integer-part \rangle,\langle fraction \rangle,
$<$ digit-sequence $>,<$ digit $>$

Context Free Grammar ..

(3) A set of rules called productions: for generating expressions of the language.
nonterminal $::=$ a string of terminals and nonterminals
English: <Sentence $>::=<$ Noun $><$ Verb $><$ Noun $>$
Reals: < integer-part $>::=<e m p t y>\mid<$ digit-sequence $>$
Notice that CFGs allow only a single non-terminal on the left-hand side of any production rules.
(4) A nonterminal chosen as the start symbol: represents the main construct of the language.
English: <Sentence >
Reals: <real-number >
The set of strings that can be generated by a CFG makes up a context-free language.

Backus-Naur Form (BNF)

One way to write context-free grammar.

- Terminals appear as they are.
- Nonterminals are enclosed by $<$ and $>$. e.g.: < real-number $>$, <digit $>$.
- The special empty string is written as <empty>.
- Productions with a common nonterminal may be abbreviated using the special "or" symbol "|".
e.g. $\quad X::=W 1, X::=W 2, \ldots, X::=W n$ may be abbreviated as $\mathrm{X}::=\mathrm{W} 1|\mathrm{~W} 2| \cdots \mid \mathrm{Wn}$

Top-Down Parsing: Example 8

- A parser checks to see if a given expression or program can be derived from a given grammar.

Check if ". 5 " is a valid real number by finding from the CFG of Example 6 a leftmost derivation of ". 5 ":
$<$ real-number $>$
$=><$ integer-part $>.<$ fraction $>$ [Production 1]
$=><$ empty $>.<$ fraction $>$ [Production 2]
$=>.<$ fraction $>$ [By definition]
$=>.<$ digit-sequence $>$ [Production 3]
$=>.<$ digit $>$ [Production 4]
$=>.5$ [Production 5]

Bottom-Up Parsing: Example 9

Check if ". 5 " is a valid real number by finding from the CFG of Example 6 a rightmost derivation of ". 5 " in reverse:

$$
\begin{aligned}
& .5=<\text { empty }>.5[\text { By definition }] \\
&=><\text { integer-part }>.5[\text { Production 2] } \\
&=> \text { integer-part }>.<\text { digit }>[\text { Production 5] } \\
&=><\text { integer-part }>.<\text { digit-sequence }>[\text { Production } 4] \\
&=><\text { integer-part }>.<\text { fraction }>[\text { Production 3] } \\
&=><\text { real-number }>[\text { Production 1] }
\end{aligned}
$$

Parse Tree: Example 10 [Real Numbers]

A parse tree of " .5 " generated by the CFG of Example 6 .

A parse tree shows how a string is generated by a CFG - the concrete syntax in a tree representation.

- Root $=$ start symbol.
- Leaf nodes $=$ terminals or $<$ empty $>$.
- Non-leaf nodes $=$ nonterminals
- For any subtree, the root is the left-side nonterminal of some production, while its children, if read from left to right, make up the right side of the production.
- The leaf nodes, read from left to right, make up a string of the language defined by the CFG.

Example 11: CFG/BNF [Expression]

1. Terminals:

$$
\mathrm{a}, \mathrm{~b}, \mathrm{c},+,-, *, /,=,(,)
$$

2. Nonterminals: Expr, Op, Id
3. Start symbol: Expr

A parse tree of " $a+b-c$ " generated by the CFG of Example 10:

Question: What is the difference between a parse tree and an abstract syntax tree?

Ambiguous Grammar: Example 13

A grammar is (syntactically) ambiguous if some string in its language is generated by more than one parse tree.

Solution: Rewrite the grammar to make it unambiguous.

Handle Left Associativity: Example 14

CFG of Example 10 cannot handle " $a+b-c$ " correctly. \Rightarrow Add a left recursive production.

Handle Left Associativity ..

Now there is only one parse tree for " $a+b-c$ ":

Handling Right Associativity: Example 15

CFG of Example 10 cannot handle " $a=b=c$ " correctly. \Rightarrow Add a right recursive production.

Question: this grammar will accept strings like " $a+b=c-d$ ". Try to correct it.

Handling Right Associativity ..

Now there is only one parse tree for " $a=b=c$ ":

Handling Precedence: Example 16

CFG of Example 10 cannot handle " $a+b * c$ " correctly. \Rightarrow Add one nonterminal (plus appropriate productions) for each precedence level.

$$
\begin{aligned}
<\text { Assign }> & ::=<\text { Expr }>=<\text { Assign }>\mid<\text { Expr }> \\
<\text { Expr }> & ::=\text { Expr }>+<\text { Term }> \\
<\text { Expr }> & ::=\text { Expr }>-<\text { Term }>\mid<\text { Term }> \\
<\text { Term }> & ::=\text { Term }>*<\text { Factor }> \\
<\text { Term }> & :=<\text { Term }>\mid<\text { Factor }>\mid<\text { Factor }> \\
<\text { Factor }> & :=(<\text { Expr }>) \mid<\text { Id }> \\
<\text { Id }> & ::=\text { a | b } \mid \mathrm{c}
\end{aligned}
$$

Handling Precedence ..

Now there is only one parse tree for " $a+b * c$ ":

Tips on Handling Precedence/Associativity

- left associativity \Rightarrow left-recursive production
- right associativity \Rightarrow right-recursive production
- n levels of precedence
- divide the operators into n groups
- write productions for each group of operators
- start with operators with the lowest precedence
- In all cases, introduce new non-terminals whenever necessary.
- In general, one needs a new non-terminal for each new group of operators of different associativity and different precedence.

Dangling-Else: Example 17

Consider the following grammar:
$<S>\quad::=$ if $<E>$ then $<S>$
$<S>\quad::=$ if $<E>$ then $<S>$ else $<S>$

- How many parse trees can you find for the statement:
if E_{1} then if E_{2} then S_{1} else S_{2}

Dangling-Else ..

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk)

Dangling-Else ...

- Ambiguity is often a property of a grammar, $\underline{\text { not }}$ of a language.

Solution: matching an "else" with the nearest unmatched "if" . i.e. the first case.

More CFG Examples

```
\(<S>\quad::=A><B><C>\)
(1) \(<A>::=a<A>\mid a\)
\(<B>\quad::=\mathrm{b}<B>\mid \mathrm{b}\)
\(<C>::=\mathrm{c}<C>\mid \mathrm{c}\)
\(<S>\quad:=<A>\mathrm{a}<B>\mathrm{b}\)
(2) \(\langle A\rangle::=<A>b \mid b\)
\(<B>\quad::=a<B>\mid a\)
<stmts> : \(=\) <empty>|<stmt> ; <stmts>
<stmt> \(::=\quad\) id> \(>=<\) expr \(>\)
                                if <expr> then <stmt>
if <expr> then <stmt> else <stmt>
while <expr> do <stmt>
    begin <stmts> end
(3)
\[
\begin{aligned}
& <\text { empty }>\mid<\text { stmt }>\text {; <stmts }> \\
& <\text { id }>:=<\text { expr }> \\
& \mid \text { if <expr }>\text { then }<\text { stmt }> \\
& \mid \text { if <expr }>\text { then }<\text { stmt }>\text { else <stmt> }> \\
& \mid \text { while <expr }>\text { do <stmt }> \\
& \mid \text { begin <stmts }>\text { end }
\end{aligned}
\]
```


Non-Context Free Grammars: Examples

(1) $\mathrm{c}<A>::=\mathrm{b}<A><C>\mid<C>$
$\quad::=\mathrm{b}$
$<C>\quad:=$ c
$\Rightarrow L=\left\{(c b)^{n}, b(c b)^{n},(b c)^{n}, c(b c)^{n}\right\}$.
(2) $L=\{w \subset w \mid w$ is a string of a 's or b 's $\}$.

This language abstracts the problem of checking that an identifier is declared before its use in a program. The first $w=$ declaration of the identifier, and the second $w=$ its use in the program.

Context-free grammar (CFG) is commonly used to specify most of the syntax of a programming language.
However, most programming languages are not CFL! CFG is commonly written in Backus-Naur Form (BNF). CFG $=$ (Terminals, Nonterminals, Productions, Start Symbol) A program is valid if we may construct a parse tree, or a derivation from the grammar.
Associativity and precedence of operations are part of the design of a CFG.
$\sqrt{ }$ Avoid ambiguous grammars by rewriting them or imposing parsing rules.

Part III

Regular Grammar, Regular Expression

Regular Grammars

Regular Grammars are a subset of CFGs in which all productions are in one of the following forms:
(1) Right-Regular Grammar

$$
\begin{aligned}
& \langle A\rangle::=x \\
& \langle A\rangle::=x<B\rangle
\end{aligned}
$$

(2) Left-Regular Grammar

$$
\begin{aligned}
& \langle A\rangle::=x \\
& \langle A\rangle:=\langle B\rangle x
\end{aligned}
$$

where A and B are non-terminals and x is a string of terminals.

RE Example 1: Right-Regular Grammar

$$
\begin{aligned}
& \text { <S> }::=\mathrm{a}<\mathrm{A}\rangle \\
& \text { <S> }::=\mathrm{b}<\mathrm{B}\rangle \\
& \text { <S> }::=\text { <empty> } \\
& \text { <A> }::=\mathrm{a}<\mathrm{S}\rangle \\
& \text { }::=\mathrm{bb}<\mathrm{S}\rangle
\end{aligned}
$$

What is the regular language this RG generates?

Regular Expressions

Regular expressions (RE) are succinct representations of RGs using the following notations.

Sub-Expression	Meaning
x	the single char ' x '
[abc]	char class consisting of 'a', 'b', or'c'
[^abc]	any char except 'a', 'b', 'c'
r*	repeat " r " zero or more times
r+	repeat "r" 1 or more times
r ?	zero or 1 occurrence of " r "
rs	concatenation of RE "r" and RE "s"
(r)s	" r " is evaluated and concatenated with "s"
$r \mid s$	RE "r" or RE "s"
\x	escape sequences for white-spaces and special symbols: $\backslash \mathrm{b} \backslash \mathrm{n} \backslash \mathrm{r} \backslash \mathrm{t}$

The following table gives the order of RE operator precedence from the highest precedence to the lowest precedence.

Function	Operator
parenthesis	$($)
counters	$*+?\{ \}$
concatenation	
disjunction	I

RE Example 2: Regular Expression Notations

RE	Meaning
$a b c$	the string "abc"
$\mathrm{a}+\mathrm{b}+$	$\left\{a^{m} b^{n}: m, n \geq 1\right\}$
$\mathrm{a}^{*} \mathrm{~b}^{*} c$	$\left\{a^{m} b^{n} c: m, n \geq 0\right\}$
$\mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{c} ?$	$\left\{a^{m} b^{n} c\right.$ or $\left.a^{m} b^{n}: m, n \geq 0\right\}$
$\mathrm{xy}(\mathrm{abc})+$	$\left\{\mathrm{xy}(\mathrm{abc})^{n}: n \geq 1\right\}$
$\mathrm{xy}[\mathrm{abc}]$	$\{x y a, x y b, x y c\}$
$\mathrm{xy}(\mathrm{a} \mid \mathrm{b})$	$\{\mathrm{xya}, \mathrm{xyb}\}$

Questions: What are the following REs?

- foo|bar*
- fool(bar)*
- (foo|bar)*

RE Example 3: Regular Expressions

- REs are commonly used for pattern matching in editors, word processors, commandline interpreters, etc.
- The REs used for searching texts in Unix (vi, emacs, perl, grep), Microsoft Word v.6+, and Word Perfect are almost identical.
- Examples:
- identifiers in $\mathrm{C}++$:
- real numbers:
- email addresses:
- white spaces:
- all C++ source or include files:

Summary on Regular Grammars

$\sqrt{ }$ There are algorithms to prove if a language is regular.
$\sqrt{ }$ There are algorithms to prove if a language is context-free too.
$\sqrt{ }$ English is not RL, nor CFL.
$\sqrt{ }$ REs are commonly used for text search.
$\sqrt{ }$ Different applications may extend the standard RE notations.

