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Part I

Language Description
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Language Description: Motivation

“Able was I ere I saw Elba.” — about Napoléon

How do you know that this is English, and not French or Chinese?
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Language Description

A language has 2 parts:

1 Syntax

lexical syntax

describes how a sequence of symbols makes up tokens
(lexicon) of the language
checked by a lexical analyzer

grammar

describes how a sequence of tokens makes up a valid program.
checked by a parser

2 Semantics
specifies the meaning of a program
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Example 1: English Language

A word = some combination of the 26 letters, a,b,c, ...,z.

One form of a sentence = Subject + Verb + Object.

e.g. The student wrote a great program.
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Example 2: Date Format

A date like 06/04/2010 may be written in the general format:

D D / D D / D D D D

where D = 0,1,2,3,4,5,6,7,8,9

But, does 03/09/1998 mean Sept 3rd, or March 9th?
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Example 3: Real Numbers (Simplified)

Examples of reals: 0.45 12.3 .98
Examples of non-reals: 2+4i 1a2b 8 <

Informal rules:

In general, a real number has three parts:

an integer part (I )
a dot “.” symbol (.)
a fraction part (F )

valid forms: I .F , .F

I and F are strings of digits

I may be empty but F cannot

a digit is one of { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
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Expression: Examples

a + b 3 ∗ a + b/c

−b+
√

b2−4∗a∗c
2∗a

a∗(1−Rn)
1−R

if (x > 10) then
x /= 10

else
x *= 2

c.f. “While I was coming to school, I saw a car accident.”
The sentence is in the form of: “While E1,E2.”
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Expression Notation: Example 4

Goal: Add a to b.

Infix : a + b

Prefix : +ab

Postfix : ab+

Abstract Syntax Tree

+
/ \
a b

Abstract syntax tree is independent of notation.
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Expression

A constant or variable is an expression.

In general, an expression has the form of a function:

E
4
= Op (E1,E2, ....,Ek)

where Op is the operator, and E1,E2, ....,Ek are the operands.

An operator with k operands is said to have an arity of k; and
Op is an k-ary operator.

unary operator : −x
binary operator : x + y
ternary operator : (x > y) ? x : y
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Infix, Prefix, Postfix, Mixfix

Infix : E1 Op E2 (must be binary operator!)

a + b, a ∗ b, a− b, a/b, a == b, a < b.

Prefix : Op E1 E2 . . .Ek

+ab, ∗ab, −ab, /ab, == ab, < ab.

Postfix : E1 E2 . . .Ek Op

ab+, ab∗, ab−, ab/, ab ==, ab < .

Mixfix : e.g. if E1 then E2 else E3
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Abstract Syntax Tree

EkE E2

p

1

O
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Expression Notation: Example 5

infix : 3 ∗ a + b/c

prefix : + ∗ 3a/bc

postfix : 3a ∗ bc/+

abstract syntax tree

+
/ \
/ \
* /
/ \ / \
3 a b c

Note: Prefix and postfix notation does not require parentheses.
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Expression Notation: Example 6

infix : (−b +
√

b2 − 4 ∗ a ∗ c)/(2 ∗ a)

prefix : / +−b
√− ∗bb ∗ ∗4ac ∗ 2a

postfix : b − bb ∗ 4a ∗ c ∗ −√+ 2a ∗ /

2

*

_

b b

*

c

*

4 a

*

sqrt()_

b

divide

+

a
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Postfix Evaluation: By a Stack

infix expression: 3 ∗ a + b/c .

postfix expression: 3a ∗ bc/+.

(3a)3
a

3
a*

3
b

(3a)

(3a)
b
c
/

(b/c)
(3a)

(b/c)
(3a)

+

(3
a+

b/
c)

b
c

(3a)
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Precedence and Associativity in C++

Operator Description Associativity

[ ] array element LEFT
· structure member
→ pointer
- minus RIGHT

++ increment
- - decrement
∗ indirection
∗ multiply LEFT
/ divide
% mod
+ add LEFT
- subtract

== logical equal LEFT
= assignment RIGHT
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Precedence

Example: 1/2 + 3 ∗ 4 = (1/2) + (3 ∗ 4)
because ∗, / has a higher precedence over +, −.

Precedence rules decide which operators run first. In general,

x P y Q z = x P ( y Q z )

if operator Q is at a higher precedence level than operator P.
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Associativity: Binary Operators

Example: 1− 2 + 3− 4 = ((1− 2) + 3)− 4
because +, − are left associative.

Associativity decides the grouping of operands with operators of
the same level of precedence.
In general, if binary operator P, Q are of the same precedence level:

x P y Q z = x P ( y Q z )

if operator P, Q are both right associative;

x P y Q z = ( x P y ) Q z

if operator P, Q are both left associative.
Question : What if + is left while − is right associative?
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Associativity: Unary Operators

Example in C++: ∗a + + = ∗(a + +)
because all unary operators in C++ are right-associative.

In Pascal, all operators including unary operators are
left-associative.

In general, unary operators in many languages may be
considered as non-associative as it is not important to assign
an associativity for them, and their usage and semantics will
decide their order of computation.

Question : Which of infix/prefix/postfix notation needs
precedence or associative rules?
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Summary on Syntax

√
Will describe a language by a formal syntax and an informal
semantics

√
Syntax = lexical syntax + grammar

√
Expression notation: infix, prefix, postfix, mixfix

√
Abstract syntax tree: independent of notation

√
Precedence and associativity of operators decide the order of
applying the operators

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007, L1)



Part II

Grammar
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Grammar: Motivation

What do the following sentences really mean?

“I saw a small kid on the beach with a binocular.”

What is the final value of x?

x = 15
if (x > 20) then
if (x > 30) then
x = 8
else
x = 9

Ambiguity in semantics is often caused by ambiguous grammar of
the language.
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A Formal Description: Example 7

1. < real-number > ::= < integer -part > . < fraction >
2. < integer -part > ::= <empty> | < digit-sequence >
3. < fraction > ::= < digit-sequence >
4. < digit-sequence > ::= < digit > | < digit >< digit-sequence >
5. < digit > ::= 0|1|2|3|4|5|6|7|8|9

This is the context-free grammar of real numbers written in the
Backus-Naur Form.
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Context Free Grammar (CFG)

A context-free grammar has 4 components:

1 A set of tokens or terminals:
atomic symbols of the language.

English : a, b, c, ...., z
Reals : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, .

2 A set of nonterminals:
variables denoting language constructs.

English : < Noun >, < Verb >, < Adjective >, . . .
Reals : < real-number >, < integer -part >, < fraction >,

< digit-sequence >, < digit >
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Context Free Grammar ..

3 A set of rules called productions:
for generating expressions of the language.

nonterminal ::= a string of terminals and nonterminals

English : < Sentence > ::= < Noun > < Verb > < Noun >
Reals : < integer -part > ::= <empty>|< digit-sequence >

Notice that CFGs allow only a single non-terminal on the
left-hand side of any production rules.

4 A nonterminal chosen as the start symbol:
represents the main construct of the language.

English : < Sentence >
Reals : < real-number >

The set of strings that can be generated by a CFG makes up a
context-free language.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007, L1)



Backus-Naur Form (BNF)

One way to write context-free grammar.

Terminals appear as they are.

Nonterminals are enclosed by < and >.
e.g.: < real-number >, < digit >.

The special empty string is written as <empty>.

Productions with a common nonterminal may be abbreviated
using the special “or” symbol “|”.

e.g. X ::= W1, X ::= W2, ..., X ::= Wn

may be abbreviated as X ::= W1 | W2 | · · · | Wn
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Top-Down Parsing: Example 8

A parser checks to see if a given expression or program can be
derived from a given grammar.

Check if “.5” is a valid real number by finding from the CFG of
Example 6 a leftmost derivation of “.5”:

< real-number >
=> < integer -part > . < fraction > [Production 1]
=> <empty> . < fraction > [Production 2]
=> .< fraction > [By definition]
=> .< digit-sequence > [Production 3]
=> .< digit > [Production 4]
=> .5 [Production 5]
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Bottom-Up Parsing: Example 9

Check if “.5” is a valid real number by finding from the CFG of
Example 6 a rightmost derivation of “.5” in reverse:

.5 = <empty>.5 [By definition]
=> < integer -part > .5 [Production 2]
=> < integer -part > . < digit > [Production 5]
=> < integer -part > . < digit-sequence > [Production 4]
=> < integer -part > . < fraction > [Production 3]
=> < real-number > [Production 1]
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Parse Tree: Example 10 [Real Numbers]

A parse tree of “.5” generated by the CFG of Example 6.

<real-number>
/ | \

<integer-part> . <fraction>
| |

<empty> <digit-sequence>
|

<digit>
|
5
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Parse Tree

A parse tree shows how a string is generated by a CFG — the
concrete syntax in a tree representation.

Root = start symbol.

Leaf nodes = terminals or <empty>.

Non-leaf nodes = nonterminals

For any subtree, the root is the left-side nonterminal of some
production, while its children, if read from left to right, make
up the right side of the production.

The leaf nodes, read from left to right, make up a string of
the language defined by the CFG.
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Example 11: CFG/BNF [Expression]

< Expr > ::= < Expr >< Op >< Expr >
< Expr > ::= (< Expr >)
< Expr > ::= < Id >

< Op > ::= + | - | * | / | =
< Id > ::= a | b | c

1. Terminals: a, b, c, +, -, *, /, =, (, )
2. Nonterminals: Expr , Op, Id
3. Start symbol: Expr
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Parse Tree : Example 12 [Expression]

A parse tree of “a + b − c” generated by the CFG of Example 10:

<Expr>
/ | \

<Expr> <Op> <Expr>
/ | \ | |

<Expr> <Op> <Expr> - <Id>
| | | |
<Id> + <Id> c
| |
a b

Question: What is the difference between a parse tree and an
abstract syntax tree?
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Ambiguous Grammar: Example 13

A grammar is (syntactically) ambiguous if some string in its
language is generated by more than one parse tree.

<Expr>
/ | \

<Expr> <Op> <Expr>
| | / | \
<Id> + <Expr> <Op> <Expr>
| | | |
a <Id> - <Id>

| |
b c

Solution: Rewrite the grammar to make it unambiguous.
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Handle Left Associativity: Example 14

CFG of Example 10 cannot handle “a + b − c” correctly.
⇒ Add a left recursive production.

< Expr > ::= < Expr >< Op >< Term >
< Expr > ::= < Term >
< Term > ::= (< Expr >)| < Id >

< Op > ::= + | - | * | / | =
< Id > ::= a | b | c
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Handle Left Associativity ..

Now there is only one parse tree for “a + b − c”:

<Expr>
/ | \

/ | \
<Expr> <Op> <Term>
/ | \ | |

<Expr> <Op> <Term> - <Id>
| | | |

<Term> + <Id> c
| |
<Id> b
|
a
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Handling Right Associativity: Example 15

CFG of Example 10 cannot handle “a = b = c” correctly.
⇒ Add a right recursive production.

< Assign > ::= < Expr > = < Assign >
< Assign > ::= < Expr >

< Expr > ::= < Expr >< Op >< Term > | < Term >
< Term > ::= (< Expr >)| < Id >

< Op > ::= + | - | * | /
< Id > ::= a | b | c

Question: this grammar will accept strings like “ a + b = c - d ”.
Try to correct it.
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Handling Right Associativity ..

Now there is only one parse tree for “a = b = c”:

<Assign>
/ | \

/ | \
<Expr> = <Assign>

| / | \
<Term> <Expr> = <Assign>

| | |
<Id> <Term> <Expr>
| | |
a <Id> <Term>

| |
b <Id>

|
c
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Handling Precedence: Example 16

CFG of Example 10 cannot handle “a + b ∗ c” correctly.
⇒ Add one nonterminal (plus appropriate productions) for each
precedence level.

< Assign > ::= < Expr > = < Assign > | < Expr >
< Expr > ::= < Expr > + < Term >
< Expr > ::= < Expr > − < Term > | < Term >
< Term > ::= < Term > ∗ < Factor >
< Term > ::= < Term > / < Factor > | < Factor >

< Factor > ::= (< Expr >)| < Id >
< Id > ::= a | b | c
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Handling Precedence ..

Now there is only one parse tree for “a + b ∗ c”:

<Assign>
|

<Expr>
/ | \
/ | \

<Expr> + <Term>
| / | \

<Term> <Term> * <Factor>
| | |

<Factor> <Factor> <Id>
| | |
<Id> <Id> c
| |
a b
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Tips on Handling Precedence/Associativity

left associativity ⇒ left-recursive production

right associativity ⇒ right-recursive production

n levels of precedence

divide the operators into n groups
write productions for each group of operators
start with operators with the lowest precedence

In all cases, introduce new non-terminals whenever necessary.

In general, one needs a new non-terminal for each new group
of operators of different associativity and different precedence.
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Dangling-Else: Example 17

Consider the following grammar:

< S > ::= if < E > then < S >
< S > ::= if < E > then < S > else < S >

How many parse trees can you find for the statement:

if E1 then if E2 then S1 else S2
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Dangling-Else ..

S2S1E2

E1

S

if then S

if then else

S2E1

E2 S1

if then else

if then

S

S
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Dangling-Else ...

Ambiguity is often a property of a grammar, not of a
language.

Solution: matching an “else” with the nearest unmatched “if” .
i.e. the first case.
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More CFG Examples

1

< S > ::= < A >< B >< C >
< A > ::= a< A > | a
< B > ::= b< B > | b
< C > ::= c< C > | c

2

< S > ::= < A > a < B > b
< A > ::= < A > b | b
< B > ::= a< B > | a

3

<stmts> ::= <empty> | <stmt> ; <stmts>
<stmt> ::= <id> := <expr>

| if <expr> then <stmt>
| if <expr> then <stmt> else <stmt>
| while <expr> do <stmt>
| begin <stmts> end
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Non-Context Free Grammars: Examples

1

< S > ::= < B >< A >< C > | < C >< A >< B >
b< A > ::= c< A >< B > | < B >
c< A > ::= b< A >< C > | < C >
< B > ::= b
< C > ::= c

⇒ L = { (cb)n, b(cb)n, (bc)n, c(bc)n }.

2 L = { wcw |w is a string of a’s or b’s }.

This language abstracts the problem of checking that an
identifier is declared before its use in a program.
The first w = declaration of the identifier, and
the second w = its use in the program.
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Summary on Grammar

√
Context-free grammar (CFG) is commonly used to specify
most of the syntax of a programming language.

√
However, most programming languages are not CFL!

√
CFG is commonly written in Backus-Naur Form (BNF).

√
CFG = (Terminals, Nonterminals, Productions, Start Symbol)

√
A program is valid if we may construct a parse tree, or a
derivation from the grammar.

√
Associativity and precedence of operations are part of the
design of a CFG.

√
Avoid ambiguous grammars by rewriting them or imposing
parsing rules.
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Part III

Regular Grammar, Regular Expression
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Regular Grammars

Regular Grammars are a subset of CFGs in which all productions
are in one of the following forms:

1 Right-Regular Grammar

<A> ::= x
<A> ::= x<B>

2 Left-Regular Grammar

<A> ::= x
<A> ::= <B>x

where A and B are non-terminals and x is a string of terminals.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007, L1)



RE Example 1: Right-Regular Grammar

<S> ::= a<A>
<S> ::= b<B>
<S> ::= <empty>
<A> ::= a<S>
<B> ::= bb<S>

What is the regular language this RG generates?

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007, L1)



Regular Expressions

Regular expressions (RE) are succinct representations of RGs using
the following notations.

Sub-Expression Meaning

x the single char ‘x’
. any single char except the newline

[abc] char class consisting of ‘a’,‘b’, or‘c’
[∧abc] any char except ‘a’,‘b’,‘c’

r* repeat ”r” zero or more times
r+ repeat ”r” 1 or more times
r? zero or 1 occurrence of ”r”
rs concatenation of RE ”r” and RE ”s”

(r)s ”r” is evaluated and concatenated with ”s”
r | s RE ”r” or RE ”s”
\x escape sequences for white-spaces and special sym-

bols: \b \n \r \t
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Precedence of Regular Expression Operators

The following table gives the order of RE operator precedence from
the highest precedence to the lowest precedence.

Function Operator

parenthesis ( )

counters * + ? { }

concatenation

disjunction |
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RE Example 2: Regular Expression Notations

RE Meaning

abc the string ”abc”

a+b+ {ambn : m, n ≥ 1}
a*b*c {ambnc : m, n ≥ 0}
a*b*c? {ambnc or ambn : m, n ≥ 0}

xy(abc)+ {xy(abc)n : n ≥ 1}
xy[abc] {xya, xyb, xyc}
xy(a|b) {xya, xyb}

Questions: What are the following REs?

foo|bar*

foo|(bar)*

(foo|bar)*
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RE Example 3: Regular Expressions

REs are commonly used for pattern matching in editors, word
processors, commandline interpreters, etc.

The REs used for searching texts in Unix (vi, emacs, perl,
grep), Microsoft Word v.6+, and Word Perfect are almost
identical.

Examples:

identifiers in C++:

real numbers:

email addresses:

white spaces:

all C++ source or include files:
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Summary on Regular Grammars

√
There are algorithms to prove if a language is regular.

√
There are algorithms to prove if a language is context-free too.

√
English is not RL, nor CFL.

√
REs are commonly used for text search.

√
Different applications may extend the standard RE notations.
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