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Part I

Introduction
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A Typical AI Problem

There are three musician: Alan, Bill, and Carl.

One of them is a guitarist, one of them is a drummer, and one of
them is a pianist.

One day, the drummer would like to hire the guitarist to do a
recording, but somebody told him that the guitarist and the pianist
had gone out of town for performance together. The drummer
then went to their performance and really impressed with the
show. There are more facts:

guitarist earns more money then drummer.

Alan earns less than Bill.

Carl had never heard of Bill.

Question: What instruments do Alan, Bill, and Carl play?
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Logic Programming

Imperative programming implements a function using control
structures and assignments which change the state of the
machine (computation).

Functional programming implements a function using function
composition of simpler or primitive functions, and function
applications.

Logic programming specifies a set of relations among the
objects of interest — the logic part of an algorithm.

Algorithm = Logic + Control

A program is an algorithm.
We programmers specify the logic.
Logic programming language supplies the control.
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Logic Programming Framework

   Base

Theorem
Prover

normally a set of
facts and rules

plays the role of traditional
interpreter/compiler

yes/no or variable binding

Knowledge

answer

query
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Example: flights
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hongkong

tokyo

beijing

vancouver

sanfrancisco
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Example: Specify a Relation in a Table

A concrete view of a relation is as a table.

e.g. the following table specifies a flight connection relation:

direct flight

Departure Arrival

hongkong tokyo

hongkong beijing

hongkong sanfrancisco

tokyo hongkong

tokyo vancouver

A table completely specifies a relation: a tuple (X1, . . . ,Xn)
is in the relation iff it is in the table of the relation.

A tuple (X,Y) is in the relation direct flight if it is in the
above table.
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Specify a Relation By Facts

A relation is often called a predicate.

e.g. Instead of saying that the tuple (hongkong,tokyo) is in
the relation direct flight, we say that the boolean
predicate direct flight(hongkong,tokyo) is true.

The above table for direct flight is represented as a set of
facts in Prolog as:

direct_flight(hongkong, tokyo).
direct_flight(hongkong, beijing).
direct_flight(hongkong, sanfrancisco).
direct_flight(tokyo, hongkong).
direct_flight(tokyo, vancouver).
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Specify a Relation By Rules

Sometimes it can be difficult or even impossible to give a
table for a relation — e.g. an infinite relation. Instead, we use
rules to describe a relation.

In particular, recursive rules are usually used to define a
relation.

Examples:
If there is a direct flight from X to Y, then there is a flight from
X to Y.
Recursively, if there is a direct flight from X to Y, and there is a
flight from Y to Z, then there is a flight from X to Z.

In Prolog, the relation flight is given by the two rules:

flight(X,Y) :- direct_flight(X,Y).
flight(X,Z) :- direct_flight(X,Y), flight(Y,Z).

“:-” is read as “if”.
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Queries About a Relation

Logic programming is driven by queries about relations.

The simplest queries ask if a tuple belongs to a relation. e.g.

Is (hongkong,tokyo) in the relation direct flight?
Is (hongkong,vancouver) in the relation direct flight?

Queries containing variables are more interesting.
e.g., you’re looking for a flight from HK to Vancouver.

you may first ask:
Is (hongkong,vancouver) in the relation direct flight?

If it fails, you then ask:
Is there a flight from HK to Vancouver via some city X?

i.e. Is there a city X such that both (hongkong,X) and
(X,vancouver) are in the relation direct flight?
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How To Answer Queries?

Generally, a logic program is a set of sentences in a logic.

For example, our logic program about flight consists of the
following knowledge database:

direct_flight(hongkong, tokyo).
direct_flight(hongkong, beijing).
direct_flight(hongkong, sanfrancisco).
direct_flight(tokyo, hongkong).
direct_flight(tokyo, vancouver).
(forall X,Y) direct_flight(X,Y) -> flight(X,Y).
(forall X,Y,Z) direct_flight(X,Y), flight(Y,Z) -> flight(X,Z).

If K is a logic program and Q is a query, then the answer to
the query is ”yes” if Q is entailed by K.

Thus, to answer the query flight(hongkong,vancouver),
we check to see if the sentence corresponding to this query is
a logical consequence of the above knowledge database.
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Logic Programming With Relations

Computing with relation is more flexible than with function.

If a program implements a function foo(x), then this
program can also be taken as a specification of the relation:

{ (x, y) | y = foo(x) }

Relations treat arguments x and results y uniformly: they
have no sense of direction, no prejudice about who is
computed from whom.

If a program specifies the relation R(x,y),
then we can supply an x, say x1, and ask it to find some y1

such that R(x1, y1) holds.
We can also supply a y2, and ask it to find some x2 such that
R(x2, y2) is true.

e.g., if we define R(x,y) holds iff square(x) = y, then

we can ask for some or all y such that R(2,y) holds; or,
we can also ask for some or all x such that R(x,4) holds.
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Prolog

Although LP is more than Prolog, it is the most widely used
LP language.

Prolog stands for ”PROgramming in LOGic”.

Prolog only implements a subset of logic : first-order Horn
clause logic. Because of this many people call Prolog a
“Relational Programming” language.

It has always been an ambition of the Mathematics and
Computing Science communities to construct systems that
would prove theorems automatically.

The first actual implementation was done by Alain
Colmerauer in collaboration with Kowalski at Marseille
University where it was used for (among other things) natural
language processing and AI.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Prolog ..

Widespread interest in Prolog really began when David
Warren of Edinburgh University produced the first efficient
implementation based on the Warren Abstract Machine.

Prolog was a major component of the Japanese 5th
Generation Project which seems to have had mixed fortunes.

Prolog is widely used in industry for

expert systems,
artificial intelligence
natural language processing & computational linguistics

It has also found some use as a

relational database prototyping language
rapid prototyping systems of industrial software
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Main References

W.F. Clocksin and C.S. Mellish. Programming in Prolog.
Library open reserve.

Using SWI Prolog – The Basics. Available on the course
website.

The following websites contain everything that you’ll want to
know about Prolog. It includes pointers to free Prolog
interpreters and compilers for PC.

http://www.cs.cmu.edu/Groups/AI/lang/prolog/0.html
http://www.swi-prolog.org
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A SWI Prolog Session

Welcome to SWI-Prolog (Multi-threaded, Version 5.4.7)

Copyright (c) 1990-2003 University of Amsterdam. ...

Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

?- [flight]. /* Load the program "flight.pl" */

% flight compiled 0.01 sec, 1,576 bytes

Yes

?- direct_flight(hongkong,tokyo). /* I type this */

Yes

?- direct_flight(hongkong,seoul).

No

?- direct_flight(hongkong,X).

X = tokyo ; /* System response, then I typed ";" */

X = beijing ;

X = sanfrancisco ;

No

?- ^D

% halt
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Part II

Syntax, Fact, Rule, Program
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Prolog Syntax Illustrated

clause (rule)flight(X,Z) :− direct_flight(X,Y), flight(Y,Z) .

variables

relations, predicates, functors

atoms

direct_flight(hongkong, tokyo).  clause (fact)

facts/rules end with a period "."

• All but clauses and separators are terms.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Prolog Syntax Defined

<fact> ::= <atom> | <functor> (<terms>)

<rule> ::= <term> :- <terms>.

<query> ::= <terms>.

<terms> ::= <term> | <terms>, <term>

<term> ::= <atom> | <variable> | <number> | <functor> (<terms>)

<functor> ::= <atom>

All Prolog data objects are terms.

Prolog is weakly typed.
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Atoms

Three types of atom

1 Alphanumerics: Strings of letters, digits and “ ”. It must start
with a lower case letter. e.g.

hongkong tokyo fred_Bloggs a_Really_Silly_Atom

2 Special character strings: Strings of the allowed special
characters. May not contain letters, digits or “ ”. e.g.
>==>, ----, <<<>>>.

3 Quoted character strings: Strings of any character enclosed
between ’. e.g.
’Fred Bloggs’, ’An atom with spaces’.

These are very useful for atoms beginning with upper case
letters. e.g. emperor(’Octavius’).
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Variables

Variables are strings of letters, digits and ” ”. It must start with an
upper case letter or a “ ”.

X Variable L1_1 Fred X_3 _23

Prolog variables are logical variables, not store variables as in
C++/Pascal. They are given values by instantiation rather
than by assignment.

Anonymous variables as denoted by ” ” are “don’t care”
variables. e.g.

| ?- parent(’John’, _). /* Does John have a kid? */
yes
| ?-

The “ ” means : find a value for “ ” which satisfies the query,
but don’t bother to tell me what that value is.
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Variables ..

Anonymous variables are also useful in rules:

killer(X) :- murdered(X,_).

Can use more than one anonymous variable in a clause:

| ?- parent(_,_).
yes
| ?-

Each of the ” ” means a different logical variable. In other
words, this query is equivalent to the query parent(X,Y).
except that Prolog does not list the pairs for which “parent”
can be proved; it just says “yes”.
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Numbers

Prolog allows both integers and real numbers. One restriction:
there must be at least one digit before and after a decimal for a
real number.

23 0.23 12.3e34
10243 1.0234 -11.2e-45

Prolog provides the bare minimum of numeric operations:

+ Addition
- Subtraction
* Multiplication
/ Division
// Integer Division
mod Integer Remainder

Prolog is very lousy for numeric computations.
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Structures

1 Simple Terms: <atom> | <variable> | <number>.

2 Functors: Names for relations/predicates. They must be
alphanumeric atoms. e.g.

flight, direct_flight, emperor.

3 Structures or Compound Terms: <functor>(<terms>).

Examples of structures:

flight(hongkong,tokyo)
flight(hongkong, emperor(qing))
book(’Programming Languages’, author(sethi))

Functors can be overloaded:

emperor(qing).
emperor(qing, ’Qing Dynasty’).
emperor(X) :- emperor(X,_).
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Variable Instantiation

A variable in a term is instantiated when it is bound to some
value.

For example, when you input the query,

flight(hongkong, X)

the variable X is not bound to any value. Thus, X is not
instantiated.

Prolog replies to the query with,

X = tokyo

By then, variable X is instantiated or bound to the atom
“tokyo”.
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Facts, Rules

Fact = something that is unconditionally true.

A fact is written as: r(t1, ..., tn),
where r is a functor, and t1, . . . , tn are terms.

A rule contains at least one condition.

A rule has the form: <head> :- <body>.

r(t1, . . . , tn) : − r1(t11, . . . , t1k), . . . , rm(tm1, . . . , tmj).

Logically, it says that if the terms in the right side are ALL
true, then the term on the left side is also true. Variables are
universally quantified. e.g.

brother(X,Y) :- brother(X,Z), brother(Y,Z).
/* for ALL X,Y,Z, if X is Z’s brother, and Y is

also Z’s brothers, then X is Y’s brother */
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Procedural Interpretation

To prove a query Q:

1 If P is a fact:

Try to match it with P, and return the variable bindings, if
any, as an answer.

e.g. Given the query
direct_flight(hongkong, sanfrancisco),
if P = direct_flight(hongkong, sanfrancisco) is a
fact, then the two match exactly, and a “Yes” answer will be
returned.

e.g. If the query is direct_flight(hongkong, X), then X
is bound to sanfrancisco, and the system returns the
binding together with a “Yes” answer.
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Procedural Interpretation ..

1 If P : − P1, ...,Pn is a rule:

Try to match it with P — the head of the rule.
If there is a match, then recursively call to prove P1, . . . ,Pn.

e.g. Given the query flight(hongkong,vancouver), it
will match hongkong with the following rule:

flight(hongkong,Z) :- direct_flight(hongkong,Y), flight(Y,Z).

Then the system will recursively call to answer the query

direct_flight(hongkong,Y), flight(Y,vancouver).

by trying to match the variable Y.
(after putting Z = vancouver)
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What is Logic Programming?

Logic program = facts + rules: represents the
knowledge/information.

Based on the knowledge, answer queries by deduction.

Closed world assumption:

Anything that cannot be deduced from the given facts and
rules is false!

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Part III

Prolog Programming with Lists
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List Structures

In Prolog, a list is a built-in datatype (again, from Lisp).

A Prolog list is a structure (compound term) using the binary
prefix functor “.” (c.f. list constructor cons in Scheme/Lisp
and :: in ML)

An empty list is pre-defined as : [].

Examples:

.(1, .(2, []))

.(hello, .(world, []))

.(6, .(*, .(9, .(is, []))))

Since Prolog is weakly typed or latently typed, items in a list
can be of mixed types.
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List Structures ..

Writing lists using the "." functor is unwieldy and error-prone.

Prolog provides syntactic sugar by allowing the “,” notation
for lists (c.f. ML): e.g.

.(1, .(2, [])) <=> [1, 2]

.(hello, .(world, [])) <=> [hello, world]

.(6, .(*, .(9, .(is, [])))) <=> [6, *, 9, is]

.(1, .(.(two, .(three,[])), .(4,[]))) <=> [1, [two,three], 4]

To make things even easier (especially when using pattern
matching), Prolog allows another notation with "|". e.g.

[1 | [2]] <=> [1, 2]
[6, * | [9, is]] <=> [6, *, 9, is]

In general, [V1,V2, . . . ,Vn|Tail ] means a list containing items,
“V1”, . . . , “Vn”, followed by whatever is in the sub-list “Tail”.
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Predicates On Lists: cons, head, tail

cons constructs a new list from a given head and a tail.

cons(Head, Tail, New_List) is true if New List is the list
whose head is Head, and whose tail is Tail. That is,
[Head|Tail].

cons(Head, Tail, New_List) :- New_List = [Head|Tail].

For example:

cons(1, [2], L) is true iff L is [1, 2].

A more concise way of defining cons:

cons(H, T, [H|T]).

We can similarly define:

head([H|T], H). /* or even: head([H|_], H). */
tail([H|T], T). /* or even: tail([_|T], T). */
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List Predicates

We can now ask queries about cons:

| ?- cons(1, [2,3,4], L).
L = [1,2,3,4];
No

| ?- cons(Head, Tail, [1,2,3,4,5]).
Tail = [2,3,4,5]
Head = 1
Yes

| ?- cons(1, X, Y).
X = _7423,
Y = [1|X];
No
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List Predicate: member

SWI-Prolog has a built-in predicate, member(X, List): X is a
member of List.

member(X, List) :- List = [ X | Tail ].
member(X, List) :- List = [ Y | Tail ], member(X, Tail).

Or more concisely,

member(X, [ X | Tail ] ).
member(X, [ Y | Tail ] ) :- member(X, Tail).

| ?- member(X, [1,2,3]).
X = 1 ;
X = 2 ;
X = 3 ;
No

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



List Predicate: delete

SWI-Prolog has a built-in predicate, delete(Old List, X, New List):
delete an occurrence of X in Old List to obtain New List.

mydelete([], X, []).
mydelete([ X | Tail ], X, Tail).
mydelete([ H | Tail ], X, [H | L]) :-

mydelete(Tail, X, L), L \== Tail
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delete: Examples

| ?- mydelete([1,2,3], 1, L).
L = [2,3]
Yes
| ?- mydelete([1,2,3], 5, L).
No
| ?- mydelete([1,2,3], X, [1,3]).
X = 2
Yes
| ?- mydelete([1,a,1,b,1], 1, L).
L = [a,1,b,1];
L = [1,a,b,1];
L = [1,a,1,b];
No
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List Predicate: append

SWI-Prolog has a built-in predicate, append(L1, L2, L3):
concatenate (append) L1 and L2 into L3.

append([], L, L).
append([H | L], L2, [H | Tail]) :- append(L, L2, Tail).
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append: Examples

| ?- append([1,2,3],[4,5,6],L).
L = [1,2,3,4,5,6]
Yes
| ?- append(L1, L2, [1,2,3,4]).
L1 = []
L2 = [1,2,3,4];
L1 = [1]
L2 = [2,3,4];
L1 = [1,2]
L2 = [3,4];
L1 = [1,2,3]
L2 = [4];
L1 = [1,2,3,4]
L2 = [];
No
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List Predicate: split

split(X, List, Less, Not Less): split the list, List, into 2 smaller
lists:

Less list — containing those items < item X

Not Less list — those items ≥ item X

split(X, [], [], []).
split(X, [H | Tail], [H | Less], Not_Less) :-

H < X, split(X, Tail, Less, Not_Less).
split(X, [H | Tail], Less, [H | Not_Less]) :-

H >= X, split(X, Tail, Less, Not_Less).
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split: Examples

| ?- split(3, [1,2,3,4,5], L, NL).
L = [1,2]
NL = [3,4,5]
Yes

| ?- split(hello, [hello, mum], L, NL).
ERROR: Arithmetic: ‘hello/0’ is not a function
Exception: (7) split(hello, [hello, sum], _G341, _G342)?
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List Predicate: qsort

Using split and append to implement qsort:

qsort(X,Y) if Y is a permutation of X, and Y is sorted.

qsort([], []).
qsort([H | Tail], Sorted) :-

split(H, Tail, Less, Not_Less),
qsort(Less, Sorted_Less),
qsort(Not_Less, Sorted_Not_Less),
append(Sorted_Less, [H | Sorted_Not_Less], Sorted).
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qsort: Examples

| ?- qsort([9,1,10,45,33,2], L).
L = [1,2,9,10,33,45]
Yes

qsort cannot be run “backwards” to find which list could be
sorted into another list because split relies on arithmetic
operators which require that their arguments are already
instantiated.

| ?- qsort(L, [1,2,3]).
ERROR: Arguments are not sufficiently instantiated

Exception: (8) split(_G308, _G309, _G320, _G321) ?
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Part IV

Substitutions and Unification
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Substitutions and Unification

Unification is central to Prolog:

How do we match a query with a given fact?
How do we match a query with the head of a rule?

Unification is defined in terms of substitutions.

A substitution is a finite set of the form:

σ = {v1|t1, ..., vn|tn}

where vi ’s are distinct variables, and ti ’s are terms.

The empty set is also a substitution: n = 0.

Each vi |ti is called a binding: the variable vi is bound to ti
(replace ti for all occurrences of vi ).

Examples: {X|a} {X|a, Y|f(a)} {X|Y, Y|X}.

Wrong: {X|a, X|b} {a|X} {f(X)|f(a)}.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Substitutions and Unification ..

If t is a term, and σ a substitution, then tσ is the standard
notation for the result of applying substitution σ to term t.

t σ
σ

t

If the binding v |t1 is in σ, then all occurrences of v in t are
replaced by t1.

mother(X,a){X|b, Y|c} = mother(b,a)
mother(X,a){Y|b, Z|c} = mother(X,a)
append([],Y,Y){Y|[a,b,c]} =

append([],[a,b,c],[a,b,c])
mother(X,Y){X|Y,Y|X} = mother(Y,X)

A term u is an instance of t, if u = tσ for some substitution σ.

The following are all instances of mother(X,a):

mother(b,a), mother(c,a), mother(Y,a),
mother([a,b,c],a), ...
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Unifier

Two terms, t1 and t2, unify if t1σ = t2σ for some substitution σ,
which is called a unifier.

t1 t2 Unifiers

mother(X,a) mother(b,a) {X|b}
cons(X,Y,[X|Y]) cons(a, [b,c], [a,b,c]]) {X|a, Y|[b,c]}

f(X) f(Y) {X|Y}, {Y|X},
{X|a,Y|a},
{X|f(a),Y|f(a)},
{X|g(Z),Y|g(Z)},
...
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Most General Unifier (MGU)

t1 t2

t1 t2σ = σ = t

σ’t1 t2σ’ t’= =
σ’

σ’’

σ’’ t’t =

σ

,

A unifier σ of t1 and t2 is called a most general unifier (mgu)
if for all other unifier σ′, t1σ

′ is an instance of t1σ.
(This means that t2σ

′ is an instance of t2σ as well.)

For example, for the 2 terms: f(X) and f(Y):

{X|Y} is an mgu.
So are: {Y|X}, {X|Z, Y|Z}.
But not these: {X|a, Y|a}, nor {X|f(Z),Y|f(Z)}.
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Example: Most General Unifier

Example: t1 = X , t2 = Y .

One possible MGU is {X|Y}.
One unifier is {X|a, Y|a}.

Therefore,

{X|a, Y|a}
X , Y ------------> a = a

^
| |
| {X|Y} | {Y|a}
v |

Y = Y ---------------
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Most General Unifiers ..

How do we prove that {X|Y} is a mgu for f(X) and f(Y), but
{X|a, Y|a} is not?

σ1 = {X|a, Y|a} is not an mgu
because σ2 = {X|Y} is a unifier for f(X) and f(Y),
but f(X)σ2 = f(Y) is not an instance of f(X)σ1 = f(a).

{X|Y} is a mgu for f(X) and f(Y)
because for any other unifier σ,
f(X)σ = f(t), for some term t, is an instance of f(Y).

mgu is not unique. But all mgu’s of two terms are equivalent
in a sense.
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Most General Unifiers: Examples

To find the MGU of f(W,g(Z),Z) and f(X,Y,h(X)).

We need W = X, g(Z) = Y, Z = h(X).

So an mgu is {W|X, Y|g(Z), Z|h(X)}?
No. It is NOT even a unifier.

Possible solutions:

{X|W, Z|h(W), Y|g(h(W))}
{W|X, Z|h(X), Y|g(h(X))}

Quiz

1. f(X,a) and f(a,Y)

2. f(h(X,a),b) and f(h(g(a,b),Y),b)

3. f(X,h(b,X)) and f(g(P,a), h(b, g(Q,Q)))
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MGU and Prolog

Unification (mgu) is the central operation in Prolog. In fact, the
operator “=” computes mgu (sometimes).

?- f(W,g(Z),Z) = f(X,Y,h(X)).
W = X = _G189, Z = h(_G189), Y = g(h(_G189)) ;
No
?- append([b],[c,d],L) = append([X|L1],L2,[X|L3]).
L = [b|_G197], X = b, L1 = [], L2 = [c, d], L3 = _G197;
No
?- X = 3+2.
X = 3+2 ;
No
?- 5 = 3+2.
No
?- X is 3+2.
X = 5 ;
No
?- 5 is 3+2.
Yes
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Part V

Prolog Search
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Prolog Search Tree: Introduction

A Prolog search tree is conditioned on the following two inputs:

1 A Prolog program, which is a sequence of clauses (facts and
rules). (As we shall see later, the order of clauses matters.)

2 A query, which is a sequence of terms G1, . . . ,Gk , k ≥ 1.

A Prolog program:

p1: parent(a,b).
p2: parent(a,c).
p3: parent(b,d).
p4: parent(b,e).
p5: parent(d,f).

anc1: ancestor(X,Y) :- parent(X,Y).
anc2: ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

A query: ancestor(X,f), ancestor(X,e).
(Find e’s and f’s common ancestors.)
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Prolog Search Tree: Introduction ..

cb

a

ed

f
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Prolog Search Tree: Goals and Subgoals

To study Prolog search trees (procedural interpretation of
Prolog programs), it helps to understand first the logical
meaning of Prolog programs and queries.

A Prolog program is like a logical theory, and a query is like a
goal to prove from the logical theory.

The key with Prolog search trees is that if you want to prove
the goal G1,G2, . . . ,Gk , and you have a rule of the form:

G1 : − B1, . . . ,Bn

then the problem of proving the original goal can be reduced
to proving the following new goal:

B1, . . . ,Bn,G2, . . . ,Gk

In a Prolog search tree, nodes represent goals to prove: the
root is the original query, the top goal to prove.
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Prolog Search and Unification: Example
ancestor(X, d)

anc1, {_1|X, _2|d}

parent(X, d)

p3, {X|b}

parent(b, d)

return with one answer X = b
SUCCEED

backtrack if more answers are requested

Every time a clause is matched with a query(goal), the
variables in the clause are renamed to avoid conflicts with
variables in the goal.

Here, we rename the variables X, Y in anc1 into 1, 2:

ancestor(_1, _2) :- parent(_1, _2).

{_1|X, _2|d} is the MGU of ancestor(X, d), the goal, and
ancestor( 1, 2), the head of the clause.
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Prolog Search and Backtracking: Example

ancestor (X, f), ancestor (X, e)

anc1, { _1|X, _2|f }

parent (X, f), ancestor (X, e)

p5, {X|d}

ancestor (d, e)

anc1 , { _3|d, _4|e }

parent (d, e)

FAIL

BACKTRACK

To simplify the presentation of search trees, we only label
arrows with rules and the bindings for variables appearing in
the parent nodes. (The bindings for other variables are not
significant and will not be shown.)
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Prolog Search Tree

If a node N1 is the only child of the node N2, then the
problem of proving the goal for N2 can be reduced to (solved
by) proving the goal for N1.

The empty goal means nothing to prove, and it always
“succeeds”.

A leaf, which is a node without children, with non-empty goal
is a dead-end: there is no way to prove the goal, and it always
“fails”.

Final complication: rename variables whenever necessary.
Variables in a goal (query) may happen to have the same
name as those in a clause, but they are different variables.
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Prolog Search Strategy

Given a query, the Prolog interpreter does not generate the
whole search tree.

It employs depth-first search, and expands the tree as it goes
along.

Starting at the root, it generates the first leftmost child of a
node.

Once a child node is generated, it immediately moves on to
the newly generated child node.

Only when a node fails (a node with non-empty goal, but has
no children), it backtracks to the nearest ancestor node for
which another child node can be generated, and the process
continues.

The next couple of slides illustrate this search strategy, and the
process of backtracking.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Prolog Search Strategy: Example

anc1, {_1|X, _2|f}
ancestor (X, f), ancestor (X, e)

parent (X, f), ancestor (X, e)

p5, {X|d}

ancestor (d, e)

anc1, {_3|d, _4|e} anc2, {_5|d, _6|e}

parent (d, e)
FAIL

parent (d, _7), ancestor(_7, e)

p5, {_7|f}

ancestor (f, e)

parent (f, e)
FAIL

BACKTRACK

anc1, {_8|f, _9|e}
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Prolog Search Strategy: Example ..
ancestor (X, f), ancestor (X, e)

parent (X, f), ancestor (X, e)

p5, {X|d}

ancestor (d, e)

parent (d, e)
FAIL

parent (d, _7), ancestor(_7, e)

p5, {_7|f}

ancestor (f, e)

parent (f, e)
FAIL

parent(f, _12), ancestor(_12, e)
FAIL

BACKTRACK

anc1, {_1|X, _2|f}

anc1, {_3|d, _4|e} anc2, {_5|d, _6|e}

anc1, {_8|f, _9|e} anc2, {_10|f, _11|e}
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Prolog Search Tree: Complete Exampleancestor(X, d)
anc1, {_1|X, _2|d}

parent(X, d)

p3, {X|b}

SUCCEED

anc2, {_3|X, _4|d}

parent(X, _5), ancestor(_5, d)

p1, {X|a, _5|b}
FAIL

ancestor(b,d)
anc1, {_6|b, _7|d} anc2, {_8|b, _9|d}

parent(b,d)

p3

parent(b,_10), ancestor(_10,d)
p3 p4

ancestor(d,d) ancestor(e,d)

FAILparent(d, _15),ancestor(_15,d)

ancestor(f,d)

parent(f,d) parent(f,_20), ancestor(_20,d)

FAIL FAIL

SUCCEED

parent(d,d)

FAIL

anc1 anc2

anc1 anc2

p5
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Infinite Search Tree: Example

A search tree may be infinite.

The following program consists of a single clause:
p :- p.

The following is the search tree for the query p.

p

p

p

.

.

.
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Goal Order Changes Solutions

Recall that a goal is a sequence of terms: G1, . . . ,Gk .

For each 1 ≤ i ≤ k, Gi is called a subgoal.

In Prolog search trees, a rule is always applied first to the
leftmost subgoal. In other words, to prove the goal
G1, . . . ,Gk , Prolog always tries to prove the leftmost subgoal
G1 first.

This means that the order of subgoals matters.

The order for subgoals comes from two sources:

the order of terms in the original query, and
the order of terms in the body of a rule.

Change either of them, you may also change the answer to
the query.
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Goal Order Changes Solutions: Example

Compare the following two programs:

P1:

p1: parent(a,b).
anc1: ancestor(X,Y) :- parent(X,Y).
anc2: ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

P2:

p1: parent(a,b).
anc1: ancestor(X,Y) :- parent(X,Y).
anc2: ancestor(X,Y) :- ancestor(Z,Y), parent(X,Z).
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Goal Order Changes Solutions: Example ..

P1: ancestor(X,b)

anc1 anc2

parent(X,b) parent(X,_5),ancestor(_5,b)

p1, {X|a} p1, {X|a, _5|b}

SUCCEED ancestor(b,b)

parent(b,b) parent(b,_15),ancestor(_15,b)

FAILFAIL

P2: ancestor(X,b)

parent(X,b) ancestor(_5,b),parent(X,_5)

SUCCEED parent(_5,b),parent(X,_5)

parent(X,a)
FAIL

ancestor(_30,b),parent(_5,_30),parent(X,_5)

.

.

.

.

.

.

anc1

anc1

anc1

anc1

anc2

anc2

anc2

anc2

p1, {_5|a}
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Rule Order Changes Solutions

Recall that a Prolog program is a sequence of clauses (rules).

The order of rules matters because Prolog uses a search
strategy that always visit the leftmost child first, which is
created by applying the first applicable rule.

Consider the following two simple programs:

P1: P2:

p(a). p(X) :- p(X).
p(X) :- p(X). p(a).

For the query p(a), P1 will answer “Yes”, but P2 will go into an
infinite loop.
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Part VI

Cut & Negation
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Cuts: Motivation

In practice, we need to limit the size of search space to do any
useful computation without running out of memory.

This can be done to a certain degree by re-ordering clauses
and goals.

However, often the problem is with backtracking which a lot
of time is pointless, and it is a waste of memory to store the
choice points. Consider the following program:

r1: roo(X, 0) :- X < 3.
r2: roo(X, 3) :- 3 =< X, X < 6.
r3: roo(X, 6) :- 6 =< X.

And the query:

?- roo(1, Y), 2 < Y.
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Cuts: Motivation ..

The query will fail.

We know that as soon as the first subgoal roo(1,Y) matches
with the first clause r1 because:

if r1 succeeds then r2 and r3 will fail.
if r1 or r2 succeed then r3 will fail.

It is desirable such pointless backtracking be avoided:

Query will run faster.
Query will use less memory since the additional search space
for r1 and r2 will not be generated.

But Prolog is not smart enough to know that, we need a way
to tell it. This is where cuts come in:

r1: roo1(X, 0) :- X < 3, !.
r2: roo1(X, 3) :- 3 =< X, X < 6, !.
r3: roo1(X, 6) :- 6 =< X.
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Cuts

“!” (cut) is a special symbol in Prolog.
It can appear only in the body of a clause as a subgoal.
(Actually, it is legal to include it in a query. But this is
pointless so we’ll ignore this case.)
As a goal, it always succeeds!
What’s interesting is its side effect: it cuts or prunes the
search space.

roo(1,Y), 2<Y
r1,{Y/0}

1<3, 2<0

2<0
fail

3 =< 1, 1 < 6, 2 < 3

r2

fail

r3, {Y/6}

6 =< 1, 2 < 6
fail

backtrack

roo1(1,Y), 2<Y
r1,{Y/0}

1<3, !, 2<0

!, 2<0

2<0
fail

backtrack

r2

cut

r3
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Cuts ..

Given:

p :- q, !, r.
p :- t.

To prove p:

If q succeeds, then p succeeds only if r succeeds. The
alternative t will never be attempted even if r fails.

If q fails, then t will be attempted.

Effectively, “!” means that if you get this far, then you’ve
made the only correct choice, and you succeed or fail with this
choice.

The above rules behave like an “if-then-else” expression:

in SML: p = if q then r else t;
in C++: p = (q) ? r : t;
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Cuts ...

The above interpretation of ! can be generalized as follows:

p, g1,...,gj

!, r1, ..., rm, g1, ..., gk

r1, ..., rm, g1, ..., gk

if you’ve reached this far, then T2 will be cut.

T1 T2

p :- q1, …, qk, !, r1, …, rm.

p :- t1, …, tn

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Cuts: Example 1

Everyone has two biological parents, except Adam and Eve who
have none.

num_parent(adam, 0) :- !.
num_parent(eve, 0) :- !.
num_parent(X, 2).

| ?- num_parent(eve,X).
X = 0 ;
No
| ?- num_parent(fred,X).
X = 2 ;
No
| ?- num_parent(eve,2).
Yes
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Cuts: Example 2

A better solution?
num_parent(adam, X) :- !, X = 0.
num_parent(eve, X) :- !, X = 0.
num_parent(X, 2).

?- num_parent(eve,X).
X = 0 ;
No
?- num_parent(fred,X).
X = 2 ;
No
?- num_parent(eve,2).
No
?- num_parent(X,0).
X = adam ;
No /* Quiz: how to have it also return X = eve */
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Cuts: Example 3

Recall our membership relation:

member(X, [ X | Y ] ).
member(X, [ Y | Z ] ) :- member(X, Z).

What if we change it into:

member1(X, [ X | Y ] ) :- !.
member1(X, [ Y | Z ] ) :- member1(X, Z).

This is fine when both arguments are instantiated.

Can’t be used for finding all members of a list:

?- member(X,[1,2,3]). ?- member1(X,[1,2,3]).
X = 1 ; X = 1 ;
X = 2 ; No
X = 3 ;
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Cuts: Example 4

Recall the problem we had with our delete relation:

mydelete([], X, []).
mydelete([ X | Tail ], X, Tail).
mydelete([ H | Tail ], X, [H | L]) :-

mydelete(Tail, X, L), L \== Tail

?- mydelete([1,2,1], 1, L).
L = [2,1] ;
L = [1,2] ;
No

Quiz: How do we write a delete function that delete only the first
occurrence of the given item?
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Cuts: Example 4 ..

delete1([], _, []).
delete1([X|Y], X, Y) :- !.
delete1([Y1|Y2], X, [Y1|L]) :- delete1(Y2, X, L).

?- delete1([1,2,1], 1, L).
L = [2,1] ;
No

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Negation As Failure

What does “no” in Prolog mean?

president(bush, usa).
president(lincoln, usa).
president(washington, usa).

?- president(clinton, usa).
no

A “no” does not means that the assertion corresponding to
the query is false, it means that it is not in our database.

We can easily implement a version of such negation using
cuts:

not(X) :- X, !, fail.
not(_).
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Negation Example 1

?- not(president(clinton, usa)).
yes
?- not(president(washington, usa)).
no

?- X = 2, not(X = 1).
X = 2
yes

?- not(X = 1), X = 2.
no
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Negation Example 2

Bachelors?

bachelor(X) :- male(X), not(married(X)).

Should we define married in terms of single or the other way
around?

married(X) :- not(single(X)).
single(X) :- not(married(X)).

When are two lists disjoint?

joint(L1,L2) :- member(X, L1), member(X, L2).
disjoint(L1, L2) :- not(joint(L1, L2)).

(L1 is disjoint from L2 if there is no element X that is a
member of both L1 and L2.)
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Cuts: Quiz

How many answers for the query s(X,Y) to the following program?
And what are they?

q(1).
q(2).
r(a).
r(b).
p(X,Y) :- q(X),!,r(Y).
p(3,c).
s(X,Y) :- p(X,Y).
s(4,d).
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Part VII

Open List
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Open List

[ a, b | X ]

[a, b |X] is an open list.

It ends in a variable, thus allowing its structure for further
expansion.

The variable X is referred to as the end marker of the open
list.

?- L = [a, b|X].

L = [a, b|_G161]
X = _G161

G161 is a temporary variable generated by Prolog
corresponding to the end marker X.

An open list can be modified by unifying its end marker with
new data.
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Modifying an Open List

?- L = [a, b|X], X = [c|Y].

L = [a, b, c|_G167]
X = [c|_G167]
Y = _G167

In the above example, the open list L is extended from 2
known items to 3 known items followed by a new end marker
Y.

An advantage of working with open lists is that the end of a
list can be accessed quickly, in constant time, through its end
marker.

It is often used to represent data structures that require fast
access at their ends.
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Difference Lists
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�������������������
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�������������������
�������������������
�������������������
�������������������

L

L − E E

A difference list is made up of two lists. e.g. L and E, where E
unifies with a suffix of L.

The contents of the actual list is

L - E

i.e. L after the removal of the suffix part represented by E.

Examples of difference lists with contents [a,b]:

[a,b] - []
[a,b,c] - [c]
[a,b|E] - E
[a,b,c|F] - [c|F]
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Example 1: append dl

Let’s first recall the following recursive append predicate.

append([], L, L).
append([H | L], L2, [H | Tail]) :- append(L, L2, Tail).

The difference list may be used to implement a non-recursive
append dl predicate that runs in constant time as follows.

append_dl(L-M, M-N, L-N).

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

L − M M

L

�������
�������
�������

�������
�������
�������

NL − N

�������
�������
�������

�������
�������
�������

NM − N

+

||

Notice how the end markers M and N are used as
place-holders for pattern matching or unifications.

Prof. Dekai Wu, HKUST (dekai@cs.ust.hk) COMP251 (Fall 2007)



Example 1: append dl ..

To use the append dl predicate, the difference lists must be
used as follows:
append_dl([First_List | Dummy_Var1] - Dummy_Var1,

[Second_List | Dummy_Var2] - Dummy_Var2,
Result_List).

/* Output is another difference list */
?- append_dl([a,b|X]-X, [c,d|Y]-Y, R).
X = [c, d|_G193]
Y = _G193
R = [a, b, c, d|_G193]-_G193

/* By using R-[], R now can’t be further extended */
?- append_dl([a,b|X]-X, [c,d|Y]-Y, R-[]).
X = [c, d]
Y = []
R = [a, b, c, d]
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Example 2: append dl2

Another way to write the append dl predicate:

append_dl2(L-M, M, L).

And it is used as follows:

append_dl2([First_List | Dummy_Var] - Dummy_Var,
Second_List, Result_List).

?- append_dl2([a,b|X]-X, [c,d], R).

X = [c, d]
R = [a, b, c, d]
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append dl or append dl2 ?

In append dl, all 3 arguments are difference lists.

Thus, in general, the result of append dl consists of an open
list that may be used for further processing.

For example, we may append 3 lists in constant time as
follows:

?- append_dl([a,b|X]-X, [c,d|Y]-Y, L1),
append_dl(L1, [e,f|Z]-Z, R-[]).

X = [c, d, e, f]
Y = [e, f]
L1 = [a, b, c, d, e, f]-[e, f]
Z = []
R = [a, b, c, d, e, f]

On the other hand, you can’t cascade several calls of
append dl2.
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Example 3: Recursive shift

shift([], []).
shift([H|T], L) :- append(T, [H], L).

?- shift([1,2,3,4], L1), shift(L1, L2).
L1 = [2, 3, 4, 1]
L2 = [3, 4, 1, 2]

nshift(0, L, L) :- !.
nshift(N, L1, L2) :-

N1 is N-1, shift(L1, L), nshift(N1, L, L2).

?- nshift(2, [1,2,3,4], L).
L = [3, 4, 1, 2]
nshift(4, [1,2,3,4], L).
L = [1, 2, 3, 4]
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Example 3: Non-Recursive shift dl2

shift_dl2([]-[], []).
shift_dl2([H|T]-[H], T).

To use the shift dl2 predicate, it may be called as follows:

shift_dl2([First_List|Dummy_Var]-Dummy_Var, Result_List).

?- shift_dl2([1|X]-X, L).

X = [1]
L = [1]
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Example 3: Non-Recursive shift dl2 ..

?- shift_dl2([1,2,3,4|X]-X, L).

X = [1]
L = [2, 3, 4, 1]

?- shift_dl2([1,2,3,4|X1]-X1, L1),
append(L1, X2, L2), shift_dl2(L2-X2, L).

X1 = [1]
L1 = [2, 3, 4, 1]
X2 = [2]
L2 = [2, 3, 4, 1, 2]
L = [3, 4, 1, 2]
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Example 4: Non-Recursive shift dl

shift_dl(A-B, []-[]) :- A==B.
shift_dl([H|T]-[H|E], T-E).

To use the shift dl predicate, it may be called as follows:

shift_dl([First_List|Dummy_Var]-Dummy_Var, Result_List).

?- shift_dl([1,2,3,4|X]-X, L-[]).
X = [1]
L = [2, 3, 4, 1]

?- shift_dl([a]-[a], L-[]).
L = []
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Example 4: Non-Recursive shift dl ..

There is no need to use the append predicate to shift twice
with shift dl:

?- shift_dl([1,2,3,4|X]-X, L1), shift_dl(L1, L2-[]).
X = [1, 2]
L1 = [2, 3, 4, 1, 2]-[2]
L2 = [3, 4, 1, 2]

In general, to shift n times:

nshift_dl(_, X-Y, []-[]) :- X==Y, !.
nshift_dl(0, L, L) :- !.
nshift_dl(N, L, R) :- N1 is N-1,

shift_dl(L, L2), nshift_dl(N1, L2, R).

?- nshift_dl(2, [1,2,3,4|X]-X, L-[]).
X = [1, 2]
L = [3, 4, 1, 2]
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